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ABSTRACT

Distributed beamforming requires phase and frequency syn-
chronization. As oscillators drift, through Brownian motion
induced phase noise, their instantaneous phases must be
tracked and compensated. Several papers and IEEE 1588
have proposed Kalman Filter (KF) based tracking algorithms
using the unwrapped phase measurements. This paper quanti-
fies the effect of Brownian Motion induced drift at two levels.
First we derive Cramer-Rao Lower Bounds (CRLB) manifest
in one shot estimation of frequency and phase from un-
wrapped phase observations, and reveal fundamental and il-
luminating differences with the existing frequency and phase
estimation CRLBs in the literature derived in the absence
of Brownian motion. Second, we consider a KF that tracks
the instantaneous phase in intervals where there is no beam-
forming, and is switched off during beamforming. Bounds
are derived relating the error growth as a function of the
underlying duty cycle.

Index Terms— Oscillator Drift, Phase Noise, Brownian
Motion, Kalman Filter, Cramer Rao Lower Bound

1. INTRODUCTION

Distributed beamforming requires phase and frequency syn-
chronization. Even without mobility, oscillators undergo drift
that must be tracked and compensated. The process charac-
terizing this drift is Brownian motion, typically in both phase
and frequency [1]-[3]. This causes the variance of the phase
offset with respect to an ideal reference to grow with time.

The stochastic nature of independent local oscillators im-
plies that it is not just enough to estimate the channels from
the transmit nodes (which include the effect of clock off-
sets) and expect them to hold for long, even without motion.
In techniques that require close synchronization of trans-
mit nodes, uncorrected Brownian motion oscillator drift also
leads to desynchronization. Oscillator offsets must be tracked
and appropriately compensated, else channel estimates be-
come stale, transmit nodes become unsynchronized, and the
gains of distributed transmission are lost.
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Consider a WiFi distributed beamforming system at a
carrier frequency of 2.4GHz with ten fixed transmit nodes
and one fixed receive node. Suppose at time t = 0, the
transmit nodes are perfectly synchronized and have perfect
channel state knowledge. The received power at t = 0 is
10 log10(10

2) = 20dB. Even though there is no motion in
the system, the oscillators will begin to drift for time t > 0.
Oscillators used in WiFi transceivers typically drift with a
standard deviation of of 2.5 nanoseconds per second [5]. At
2.4GHz, this corresponds to a phase standard deviation of
108 degrees at time t = 0.050s, which corresponds to an
average received power of appoximately 11dB (1dB better
than incoherent transmission). In other words, even though
the standard deviation of the clocks offsets was only 125 pi-
coseconds at t = 0.050s, this is manifested as a large phase
standard deviation, and consequently poor beamforming, at
typical radio frequencies.

Thus, in order to maintain good performance in dis-
tributed transmit beamforming systems, it is important to
understand how frequently one must resynchronize. Recent
papers including [1, 2] and IEEE 1588, [7] have adopted a
two-state Kalman filtering approach, in which they assume
that the unwrapped phase is available, and track phase and
frequency using these unwrapped phase measurements. The
efficacy of such a Kalman filter based approach to distributed
transmit beamforming has also recently been demonstrated in
[6].

This paper is focused on acquiring a fundamental un-
derstanding of the effect of Brownian motion driven phase
drift at two levels. In the first we derive Cramer-Rao Lower
Bounds (CRLB) manifest in one shot estimation of frequency
and phase from instantaneous observations of the unwrapped
phase, and reveal fundamental and illuminating differences
with the existing frequency and phase estimation CRLBs in
the literature, e.g. [4], derived assuming the absence of phase
drift. At the second level we consider the use of a Kalman fil-
ter that tracks the instantaneous unwrapped phase of a single
oscillator, in intervals where there is no beamforming, and is
inevitably switched off during beamforming. Bounds are de-
rived relating the error growth as a function of the underlying
duty cycle.

2. MODELS
Our focus here is to study the effect of Brownian motion in-
duced phase noise. Over short observation intervals, the ef-
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fect of Brownian motion frequency noise can be assumed to
be negligible [3]. Thus, the basic model we consider is one in
which the unwrapped phase obeys

y(nTs) = ωcnTs + θ +
n−1∑
i=−p

w(iTs) + v(nTs), (1)

where ωc is the nominal oscillator frequency, θ a nominal
phase, Ts is the sampling interval, w(iTs) ∼ N(0, ω2

cTsq =
σ2
u) is a white sequence that models the Brownian motion,

and v(nTs) ∼ N(0, σ2
v) is also a white sequence, modeling

the effect of η and phase unwrapping errors. In the sequel
define, y[n] = y(nTs), w[n] = w(nTs) and v[n] = v(nTs).
The fact that the summation in (1) starts at i = −p, reflects
the fact that the first observation made is p samples after the
phase noise takes effect.

A state variable respresention for (1) is:

x[k + 1] = Fx[k] +Gw[k] y[k] = Hx[k] + v[k], (2)

where

x[k] =

[
θ[k]
ωc

]
F =

[
1 Ts

0 1

]
G =

[
1
0

]
H =

[
1 0

]
.

(3)

3. CRAMER RAO LOWER BOUND
The past literature on CRLBs for frequency and phase estima-
tion, e.g. [4], involves observations of complex exponentials
in white noise, without oscillator drift. Specifically, the focus
is to study the estimation of ωc and θ from

z(t) = re(jωct+θ) + η(t). (4)

where η(t) is complex Gaussian noise. Analysis of the ef-
fect of the statistics of η, the sampling rate and the number
of samples is given. As our goal is to understand the effect
of Brownian motion, rather than studying the effect of η, we
derive the CRLBs by neglecting v(nTs) in (1) or equivalently
v[n] in (2). We work instead with

y[n] = ωcnTs + θ +

n−1∑
i=−p

w[i]. (5)

Our goal is to obtain the CRLB in estimating ωc and θ from
the N -observation vector YN = [y[0], · · · , y[N − 1]]T . To
this end observe that with

WN =

⎡
⎣ 0∑
i=−p

w[i], · · · ,

N−1∑
i=−p

w[i]

⎤
⎦
T

, (6)

there holds: YN = ωcTssN +θuN +WN , with the N -vectors
sN = [0, 1, 2, · · · , N − 1]T and uN = [1, 1, · · · , 1]T . Ob-
serve, WN ∼ N(0,ΣN ), where the {ij}-th element, i ≤ j,
of the symmetric matrix ΣN = E

[
WNWT

N

]
obeys:

ΣN (i, j) = (i+ p)ω2
cTsq, (7)

For example with N = 4

ΣN = ω2
cTsq

⎡
⎢⎢⎣

p+ 1 p+ 1 p+ 1 p+ 1
p+ 1 p+ 2 p+ 2 p+ 2
p+ 1 p+ 2 p+ 3 p+ 3
p+ 1 p+ 2 p+ 3 p+ 4

⎤
⎥⎥⎦ . (8)

Thus the conditional density function fYN |Ωc,Θ(YN |ωc, θ) is
N (ωcTssN + θuN ,ΣN ). Then, [8], the Fisher Information
Matrix (FIM) is given by:

FN =

[
T 2
s s

T
NΣ−1

N sN −Tss
T
NΣ−1

N uN

−Tss
T
NΣ−1

N uN uT
NΣ−1

N uN

]
, (9)

where, with z1 = ωc and z2 = θ, the (i, j)-th element of
FN represents −E

{
∂2 log

[
fYN |Ωc,Θ(YN |ωc, θ)

]
/∂zi∂zj

}
.

Direct verification shows that:

ΣN [1, 0, · · · , 0]T = (p+ 1)ω2
cTsquN

Likewise:

ΣN [−1, 0, · · · , 0, 1]T = ω2
cTsqsN

Subsituting into (9) we get,

FN =
1

ω2
cq

diag

{
(N − 1)Ts,

1

(p+ 1)Ts

}
. (10)

The CRLB matrix is then:

ω2
cq diag

{
1

(N − 1)Ts

, (p+ 1)Ts

}
(11)

where the first and second diagonals are the CRLB for fre-
quency and phase estimation, respectively. By contrast the
CRLB matrix for estimating ωc and θ from (4) is:

σ2

r2

[
1

T 2
s
N(Q−P 2)

−(p+P )
TsN(Q−P 2)

−(p+P )
TsN(Q−P 2)

p2+2pP+Q
N(Q−P 2)

]
(12)

where σ2 is the variance of the uncorrelated real and imagi-
nary components of η, P := (N−1)/2, Q := (N−1)(2N−
1)/6. The most striking thing about the comparison between
(11) and (12) is that in the estimation of frequency, despite the
fact that the computation of (11) neglects phase unwrapping
errors, the improvement with the number of observations is
only linear, as opposed to quadratic in (12), reflecting the in-
fluence of Brownian motion. Further, while the CRLB for θ
is unaffected by the number of observations in the Brownian
motion case, it grows linearly with Ts. By contrast, without
Brownian motion, N does affect the phase estimation CRLB,
but Ts does not.

4. KALMAN TRACKING
In the rest of this paper we consider state tracking perfor-
mance within a two-stage format. Specifically we will assume
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that there are two interlaced epochs that are repeated period-
ically. In the first, the training or tracking epoch the Kalman
filter (KF) runs using the unwrapped phase measurements to
track the actual state in (2). In the second the idling or beam-
forming epoch, it is idle. For positive integers L > N and
all natural numbers M , the tracking epoch comprises sam-
ples {ML,ML+1, · · · ,ML+N −1}, and the idling epoch
comprises {ML+N,ML+N +1, · · · ,ML+L− 1}. The
duty cycle involved is D = (L−N)/L. Both, x[k] and y[k]
are now offsets from some initial estimates.

Define x̂[k + 1|k] to be the state prediction estimate ob-
tained at time k+1 on the basis of observations y[0], · · · , y[k]
and x̂[k|k] to be the state prediction estimate obtained at time
k on the basis of observations y[0], · · · , y[k]. Observe, the
idling epoch precludes the use of steady state Kalman gain.
Rather in the tracking epoch we use the standard KF equations
as used in the controls literature1, [9]. With σ2

u = ω2
cTsq,

stated purely as a recursion in terms of x̂[k + 1|k], this be-
comes:

x̂[k + 1|k] = (F −K[k]HT )x̂[k|k − 1] +K[k]y[k].

K[k] = FΣ[k|k − 1]HT (HΣ[k|k − 1]HT + σ2
v)

−1

Σ[k + 1|k] = F [Σ[k|k − 1]− Σ[k|k − 1](HΣ[k|k − 1]HT

+ σ2
v)

−1HΣ[k|k − 1]]FT + σ2
uGGT (13)

Specifically, Σ[k+1|k] represents the error covariance matrix
at time k+1, based on the observations y[0], · · · , y[k]. In the
sequel we quantify performance on the basis of Σ[k+1|k], as
the obviously definedΣ[k|k] is readily obtained from it. In the
idle epoch, in the absence of training, the correct place holder
for the state estimate used to initialize at the next tracking
epoch is:

x̂[k + 1|k] = F x̂[k|k − 1]. (14)

Figure 1 exemplifies the performance of the Kalman filter
versus the one-shot maximum likelihood estimator [10] with
a phase process noise parameter selected to yield a standard
deviation of 108 degrees of offset after 50ms (as is typical for
WiFi transceivers as discussed in Section 1); σ2

v = 0.6169. In
this example, each tracking epoch is 0.5ms, followed by an
idle epoch of 4.5ms with Ts = 10μs. After the first track-
ing interval, the KF and the one-shot estimators perform sim-
ilarly during the idle epoch. The advantage of the KF be-
comes evident after subsequent observations where the KF
incorporates the prior knowledge with the new observations.
In steady state, the prediction error of the KF at the end of
the idle epoch is less than 30 degrees RMS, which provides a
beamforming gain less than 1.5dB of the ideal with 10 trans-
mit nodes [6]. The MLE has an RMS phase error in excess
of 200 degrees at the end of each idle epoch, corresponding

1There is a slight difference in terminology between the controls and es-
timation literature, though the end products are equivalent
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Fig. 1. One shot ML tracking vs interlaced KF tracking with
steady state error bounds for KF tracking.

to incoherent combining. The black lines will be explained in
the next section. The results are averaged over 104 iterations.

5. KALMAN FILTER PERFORMANCE
During the training epoch, i.e. for k ∈ {ML,ML +
1, · · · ,ML+N−1}, (13) holds, while during the idle epoch,
i.e. for k ∈ {ML + N,ML + N + 1, · · · ,ML + L − 1},
there obtains

Σ[k + 1|k] = FΣ[k|k − 1]F ′ + σ2
uGG′. (15)

We begin by making some important remarks. Most proofs
of KF convergence, even with no idling, assume that [F,G]
is stabilizable. In this case [F,G] is not stabilizable, let alone
completely controllable. However, the fact that the uncontro-
lable mode is simple and at 1, implies, [12], that the complete
observability of [F,H] ensures that had we only trained, i.e.
only (13) held, Σ[k|k − 1] would still converge to a steady
state value, that obeys the standard algebraic Riccati equa-
tion. What the lack of stabilizability does is to guarantee that
the resulting steady state Kalman gainK is such that F−KH
has one eigenvalue at 1.

In this case one has to contend with the idle epoch as well.
Such a setting has not been analyzed in the case where [F,G]
is not stabilizable. The setting where [F,G] is stabilizable has
been considered in the sensor scheduling literature, e.g. [11],
but only for N = 1. Here we consider a general N and show
that at steady state this results in a periodic solution. In fact
we have the following Theorem.

Theorem 5.1 For every pair of integers L > N > 1, scalars
σ2
u > 0 and σ2

v ≥ 0, there exists a unique a > 0 such that
the periodic scalar sequence a[k] defined by the following
is unique and well defined: (a) For all natural numbers M ,
a[ML] = a . (b) For all k ∈ {ML,ML+1, · · ·ML+N−1}

a[k + 1] = a[k]−
a2[k]

σ2
v + a[k]

+ σ2
u, (16)
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(c) There holds:

a[ML+N ] + (L−N)σ2
u = a. (17)

Further, consider the 2 × 2 symmetric matrix sequence
Σ[k|k−1], that under (3), obeys (13) for all k ∈ {ML,ML+
1, · · ·ML+N −1}, and (15) for k ∈ {ML+N,ML+N +
1, · · · ,ML+ L− 1}, with symmetric Σ[0| − 1] ≥ 0. Then:

lim
k→∞

‖Σ[k + 1|k]− diag{a[k], 0}‖ = 0. (18)

Evidently, the frequency estimation error goes to zero.
This is unsurprising as the second state in (2) is constant. The
phase tracking error variance at steady state is periodic. The
largest value, at the end of the idle period is given by a. We
now provide bounds on a. To this end observe that (16) is a
first order Riccati equation with steady state solution:

a∗ = (σ2
u +

√
σ4
u + 4σ2

vσ
2
u)/2. (19)

From (17), a[LM + N ] < a. Then as a[k] in (16) is mono-
tonic the solution to (16) is nonincreasing in the interval
[LM,LM +N − 1]. Thus a[LM +N ] ≥ a∗, and

a ≥ (L−N)σ2
u + (σ2

u +
√

σ4
u + 4σ2

vσ
2
u)/2. (20)

Also observe that from the nondecreasing and nonegative na-
ture of the sequence in (16), in the tracking epoch a[k] ≥ a∗.
Thus with

0 ≤ λ =
σ2
v

σ2
v + a∗

< 1. (21)

a[k + 1] =
σ2
v

σ2
v + a[k]

a[k] + σ2
u ≤ λa[k] + σ2

u

Then using the fact that a[LM ] = a, a repeated recursion
shows that

a[LM +N ] ≤ λNa+ σ2
u

1− λN

1− λ
.

Consequently using (17), we obtain:

a ≤ σ2
u

(
L−N

1− λN
+

1

1− λ

)
. (22)

Observe if σ2
v = 0, then the two bounds coincide, i.e. under

high SNR the bounds are arbitrarily tight. These also quantify
the effect of duty cycle D, L and N . In Figure 1 the steady
state error evidently matches the lower bound, and the two
bounds are quite close.

6. CONCLUSION
Motivated by stringent carrier synchronization requirements
for beamforming, we have studied the effect of Brownian mo-
tion induced phase noise. Influenced by IEEE 1588’s adop-
tion of a Kalman Filter based tracking of carrier noise using
unwrapped phase measurements, we have studied two funda-
mental issues. We have derived the CRLB for estimating the

phase and frequency from the unwrapped phase and have de-
lineated notable differences from existing CRLBs for phase
and frequency estimation in the absence of Brownian motion.
We have studied the performance of a two stage Kalman Fil-
ter, interlacing periods of idling and tracking. We have shown
that the steady prediction error covariance matrix is periodic,
and have provided bounds on its value.

7. REFERENCES

[1] C. Zucca and P. Tavella, “The clock model and its re-
lationship with the allan and related variances,” Ul-
trasonics, Ferroelectrics and Frequency Control, IEEE
Transactions on, vol. 52, pp. 289 –296, feb. 2005.

[2] L. Galleani, “A tutorial on the two-state model of the
atomic clock noise,” Metrologia, 2008.

[3] J. A. McNeill and D. Ricketts, The Designer’s Guide
to Jitter in Ring Oscillators, Springer, 2009.

[4] D. Rife and R. Boorstyn, “Single-tone parameter esti-
mation from discrete-time observations,” IEEE Trans-
actions on Information Theory, pp. 591–598, 1974.

[5] “IEEE Standard 802.1AS-2011 for local and
metropolitan area networks - timing and synchro-
nization for time-sensitive applications in bridged
local area networks,” 2011.

[6] D.R. Brown, P. Bidigare, and U. Madhow, “Receiver-
Coordinated Distributed Transmit Beamforming with
Kinematic Tracking”, ICASSP 2012, to appear.

[7] IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Sys-
tems, IEEE 2008.

[8] H. Van Trees, Detection, Estimation, and Modulation
Theory, Part I. New York: John Wiley and Sons, 1968.

[9] B. D. O. Anderson and J. B. Moore, Optimal Filtering.
Prentice Hall, 1979.

[10] S. A. Tretter, “Estimating the frequency of a noisy si-
nusoid by linear regression”, IEEE Transactions on In-
formation Theory, 1985

[11] L. Shi, K. J. Henriksson and L. Qiu, “Time and Event-
based Sensor Scheduling for Networks with Lim-
ited Communication Resources”, in Preprints of IFAC
World Congress, Milano, Italy 2011.

[12] B. D. O. Anderson, “Stability properties of Kalman-
Bucy filters”, Journal of Franklin Institute, 1971.

5228


