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ABSTRACT

In this paper, the problem of informed-transmitter cooper-

ative MIMO communications is addressed. The informed-

transmitter link assumes that the distributed transmit nodes

have access to channel state information. The channel state

information includes the channel between the transmit and

receive antenna arrays and a statistical model for interfer-

ence impinging upon the receive array. In principle, the

channel will have resolvable delay spread. In addition, be-

cause the distributed sets of nodes do not have a common

local oscillator and move independently, the receiving set of

nodes may observe resolvable independent frequency offsets

and frequency spread from each of the transmit nodes. To

compensate for this doubly dispersive channel, a space-time-

frequency channel estimate is constructed. The frequency

components of the channel estimate enable improved channel

prediction capabilities. Space-time-frequency transmit adap-

tive processing approaches are developed. These techniques

are demonstrated in simulation.

1. INTRODUCTION

The concept of transmit beamforming is not new [1, 2]. Con-

ceptually, distributed extensions to transmit beamforming fol-

lowed quickly; however, practical implementations are dif-

ficult. Techniques for distributed receive beamforming are

discussed and are experimentally demonstrated with a model

of local oscillator errors in Reference [3]. The feasibility of

distributed transmit beamforming in a wireless system is dis-

cussed in References [4, 5].

The focus of this paper is to describe an approach to

construct space-time-frequency transmit beamformers and

receivers for a multiple-input multiple-output (MIMO) wire-

less communication system with a dynamic frequency-

selective channel. To construct transmit beamformers, the

channel is provided through channel-estimation feedback

[6]. Reciprocity techniques do not enable estimation of the

interference-plus-noise covariance matrix.
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One of the fundamental challenges in employing channel

state information at the transmitter is the intrinsic delay be-

tween its estimation and use. In dynamic environments, these

stale channel estimates introduce errors in the beamformer.

There are a variety of channel-prediction approaches avail-

able, for example [7]. Here, the space-time-frequency trans-

mit beamformer is evolved forward in time in an attempt to

compensate for the stale channel knowledge.

2. CONSTRUCTION OF TRANSMIT BEAMFORMER

There are numerous metrics for which one might wish to op-

timize a transmit beamformer. Here, the metric is to maxi-

mize the signal-to-interference-plus-noise (SINR) ratio at the

output of a receive beamformer. Consequently, to optimize

the transmit beamformer, one needs a model of the receive

beamformer. In the case of a memoryless static multiple-input

single-output (MISO) channel [6], because the capacity of a

link increases monotonically with SINR, optimizing this met-

ric maximizes capacity. For a MIMO system, the optimiza-

tion is slightly more complicated, but in the low signal-to-

noise ratio (SNR) limit in the memoryless static channel case,

the optimal strategy is to transmit using a single beamformer

determined by the dominant right-hand singular vector of the

whitened channel matrix [6]. By analogy, we extend this re-

sult to time-varying dispersive channels. This approach does

not guarantee optimal capacity, but does potentially provide

good performance.

To develop a transmit beamformer algorithm, a model

for the degrees of freedom available to the transmitter and a

model for the degrees of freedom at the receiver are assumed.

Both to aid interpretation and in an attempt to make this de-

velopment clearer, this algorithm is presented under three dif-

ferent assumptions in order of increasing complexity: 1) spa-

tial degrees of freedom at the transmit and receive arrays, 2)

spatial and temporal distortion degrees of freedom at both the

transmit and receive arrays, and 3) spatial, temporal, and fre-

quency distortion degrees of freedom at both the transmit and

receive arrays.
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2.1. Static Flat-Fading Channel

For the sake of introduction, consider the standard block

MIMO channel model [6] under the assumption of a static

flat-fading environment. For a system with nt transmit an-

tennas, nr receive antennas, and blocks of ns samples or

potentially chips (if the signal is critically sampled), the

channel model is given by

Z = HS + N , (1)

where the variables are defined as

Z ∈ C
nr×ns , received data

H ∈ C
nr×nt , flat-fading channel

S ∈ C
nt×ns , transmit matrix, and

N ∈ C
nr×ns , noise plus interference. (2)

Within this paper, it is assumed that all signals are described

by their complex baseband representations.

Under the assumption of a Gaussian probability distribu-

tion, p(Z) for the received signal Z is given by

p(Z) =
1

|Z|ns πns nr
e−tr{(Z−HS)† R

−1 (Z−HS)} , (3)

where ·† indicates the Hermitian conjugate, | · | indicates

the determinant, and R ∈ Cnr×nr indicates the receive

interference-plus-noise covariance matrix,

R =
1

ns

〈
NN

†
〉

, (4)

where 〈·〉 indicates the expectation. By maximizing the like-

lihood, given some observed received data Z, and under

the assumption of a known transmitted training sequence S,

the maximum-likelihood estimates for the channel Ĥ and

interference-plus-noise spatial covariance matrix R̂ are given

by

Ĥ = ZS
† (SS

†)−1 , R̂ =
1

ns
ZP

⊥
S

Z
† , (5)

where the matrix P
⊥
S

= I − S
† (SS

†)−1
S projects onto a

basis orthogonal to the row space of the transmitted signal S,

and I indicates the identity matrix.

For a multivariate system, the optimal capacity solution

is given by water filling [6, 8]. The capacity c of a MIMO

system is the bounding spectral efficiency and is given by

c = log2

∣∣I + R
−1

HΣH
†
∣∣ , (6)

where the spatial transmit covariance is indicated by Σ ∈
Cnt×nt . The water-filling approach puts the most power in

those eigenvalues of Σ associated with the best singular val-

ues of the spatially whitened channel. The whitened channel

is given by R
−1/2

H, and the singular value decomposition

(SVD) [9] of an estimate for it is given by

R̂
−1/2

Ĥ = UDV
† , (7)

where U and V are orthonormal matrices (that are generally

asymmetric), such that U
†
U = I and V

†
V = I and D is a

diagonal matrix containing the singular values.

As the power increases, the water-filling approach dis-

tributes power across more modes because of the logarithmic

compression of the capacity [6]. In the limit of low power, the

optimal strategy is to put all of the transmit power in a single

eigenvalue of the transmit covariance matrix. This rank-one

transmit covariance matrix is constructed from the dominant

right-hand singular vector v1 of the whitened channel matrix

estimate, Σ ∝ v1 v
†
1. Perhaps more importantly, the transmit-

ted signal matrix is constructed by using a right-hand singular

vector from the whitened channel matrix as a beamformer,

Sdata = v1 sdata , (8)

where Sdata ∈ Cnt×ndata is the rank-one transmission data

matix, and sdata ∈ C
1×ndata is a row vector containing the

data sequence to be transmitted.

2.2. Channel with Transmit and Receive Distortions

To model receive and transmit distortion degrees of free-

dom, where the distortions can be delay, frequency (such as

Doppler) offsets, or both, the following definitions are made:

Z̆ ∈ C
(nr·nρ)×ns , distorted received data

˘̃
H ∈ C

(nr·nρ)×(nt·nδ) , transmit and receive distorted channel

S̃ ∈ C
(nt·nδ)×ns , distorted transmit matrix

S̆ ∈ C
(nt·nβ)×ns , distorted transmit matrix used by projection

N̆ ∈ C
(nr·nρ)×ns , distorted noise plus interference . (9)

In the above equation, the number transmit distortions is given

by nδ . The model for the number of receive distortions is

more complicated. In general, there are a different number of

allowed distortions in the channel nρ than in the projection

matrix used to estimate the covariance nβ in the distortion-

extend operation analogous to that found in covariance ma-

trix estimation in Equation (5). Keeping track of the various

distortion models is admittedly difficult. To complicate mat-

ters further, the actual receiver may use a different numbers

of distortion degrees of freedom that those used in the model

for constructing the transmit beamformer, but we will not ex-

plicitly consider that here.

The receive data matrix with spatial and distortion degrees

of freedom is given by

Z̆ =
(
Z

T
ρ1

Z
T
ρ2

· · · Z
T
ρnρ

)T

, (10)
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and, similarly, the space-distorted interference-plus-noise ma-

trix is given by

N̆ =
(
N

T
ρ1

N
T
ρ2

· · · N
T
ρnρ

)T

. (11)

Consequently, the space-distorted receive covariance matrix

R̆ ∈ C
(nr·nρ)×(nr·nρ) and its estimate

ˆ̆
R are given by

R̆ =
1

ns

〈
N̆ N̆

†
〉

, and
ˆ̆
R

1

ns
Z̆ P

⊥
S̆

Z̆
† . (12)

Because the distortions assumed for the channel estima-

tion and the projection operator P
⊥
S̆

are not the necessarily

the same, the dimensions of the distorted signal data matrices

are not necessarily the same, dim{S̆} �= dim{S̃},

S̆ =
(
S

T
β1

S
T
β2

· · · S
T
βnβ

)T

. (13)

Now the channel model must take into account degrees of

freedom of potential distortions at both the transmitter and

the receiver, leading to the somewhat cumbersome form for

the distorted channel
˘̃
H,

˘̃
H =

⎛
⎜⎜⎜⎝

Hρ1,δ1
Hρ1,δ2

· · · Hρ1,δnδ

Hρ2,δ1
Hρ2,δ2

· · · Hρ2,δnδ

...

Hρnρ ,δ1
Hρnρ ,δ2

· · · Hρnρ ,δnδ

⎞
⎟⎟⎟⎠ . (14)

The estimate of this transmit and receive distorted channel is

given by

ˆ̃̆
H = Z̆ S̃

† (S̃ S̃
†)−1 , (15)

and by using the same singular value decomposition,

ˆ̆
R

−1/2 ˆ̆
H̃ = ˘̃

U
˘̃
D

˘̃
V

† . (16)

The optimized solution is given by the dominant right-hand

singular vector. By considering a model in which both the

transmitter and the receiver are allowed to compensate for

channel and interference distortions, the total energy coupled

from the transmitter to the receiver is increased.

2.2.1. Delay Distortion Assumption

If the channel is static, then the distortions are interpreted as

delays, and the transmission approach is given by

Sdata =
(
1

T
nδ

⊗ Int

)
⎡
⎢⎢⎢⎣(˘̃v1 1

T
ns

) �

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

s−δ1

s−δ2

...

s−δnδ

⎤
⎥⎥⎥⎦ ⊗ 1nt

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

(17)

where s−δ1
indicates a compensating distortion for δ1, ⊗ in-

dicates the Kronecker product, and � indicates the Hadamard

(element-by-element) product.

2.2.2. Delay-Frequency Distortion Assumption

If the channel and interference are dynamic, then there are

time-varying effects that disrupt the use of the space-time

transmit beamformer. In particular, the space-time transmit

beamformer is typically implemented at some delay relative

to when it is estimated. Consequently, the estimated beam-

former is stale. To compute a prediction for a beamformer

based on current channel estimates, for some time offset

T , the diagonal matrix TT for the transmit distortions are

constructed such that for some set of frequency distortions

fδ1
, fδ2

, · · · ,

TT = diag{e−2πi fδ1
T , e−2πi fδ2

T , · · · } (18)

can be used to evolve the source model forward in time. To

be clear, because the frequency taps are being used after they

are estimated, the effective frequency resolution of the en-

tire coherent processing interval is finer than than the intrinsic

resolution during estimation. Consequently, the estimates of

the degrees of freedom associated with frequency distortions

need to be oversampled by an appropriate factors, and some

regularization, such as diagonal loading, needs to be applied

in the matrix inversion in Equation (15). The distortion de-

grees of freedom can be interpreted as a set of both delay and

frequency offsets that produces a transmit data sequence

Sdata =
(
1

T
nδ

⊗ Int

)
TT (19)

·

⎡
⎢⎢⎢⎣(˘̃v1 1

T
ns

) �

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

e−i 2π tfδ1 � s−δ1

e−i 2π tfδ2 � s−δ2

...

e−i 2π tfδnδ � s−δnδ

⎤
⎥⎥⎥⎦ ⊗ 1nt

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

where for some sampling interval Δt, the row vector t =
Δt {0 1 · · · ndata − 1} contains the set of time offsets

corresponding to the number of transmitted samples, and fδm

is the frequency offset associated with the δth
m distortion.

3. SIMULATION

As an example, we consider doubly dispersive channel be-

tween a moving distributed 10 node (antenna) transmit array

and a static coherent 2 antenna receiver. A single, static,

20 dB interference-to-noise ratio per receive antenna inter-

ferer is present that has a channel free of delay spread. This

example allows for easier interpretation of the results. It

is assumed that training occurs for the first 5000-sample

epoch and the beamformer estimated during that period is

applied during the following 5000-sample epoch. The space-

time-frequency channel between transmit and receive arrays

is characterized by circularly symmetric Gaussian channel

fading with average power weighting w(f, d) for frequency

offset f and delay offset d given by an exponential

w(f, d) = e−α[([2T ] f)2+(B d)2] (20)
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where 2T is the total (training plus data) channel usage du-

ration, and B is the bandwidth of the signal. In the example

the weighting exponential coefficient is given by α = 1/2.

The average incoherent SNR per transmit antenna is −20 dB

at each receive antenna. The weighing function is displayed

in Figure 1 in normalized units of delay offset (B = 1) and

frequency offset (2T = 1). In the example, we assume that

the receiver only performs spatial processing, so nρ = 1. In

addition, the orthogonal signal projection during the training

epoch is performed ideally. We employ 5 delay and 5 fre-

quency (so nδ = 25) degrees of freedom for each transmit an-

tenna. With the training data, spatial, space-time, and space-

time-frequency beamformers are constructed. These transmit

beamformers are applied during the second epoch. A spatial

receive beamformer is constructed that maximizes SINR at its

output for each transmit beamformer.

The performance of each transmit beamformer is charac-

terized by the SINR at the receive beamformer output for a

given transmit beamformer approach relative to the average

SINR at the receive beamformer output for a random trans-

mit beamformer. The relative performances of various trans-

mit beamforming approaches is displayed in Figure 2. In the

figure, the distributions of performance over a 1000 random

channels are displayed. Because the receiver must mitigate

the large interferer, there is a single receive degree of free-

dom remaining. In this case, one would expect that the coher-

ent transmit gain of the 10 transmit nodes to be 10 dB stronger

than the incoherent gain of the random transmit beamformer.

We see here that the space-time-frequency transmit beam-

former achieves this gain, while the spatial and space-time

transmit beamformers have relatively poor performance be-

cause of their inability to compensate for channel dynamics.
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Fig. 1. Channel amplitude weighting w(f, d), as a function

of delay and frequency offset in units of resolution cells.

4. CONCLUSION

By extending the low-SNR optimal capacity beamforming ap-

proach for an informed transmitter MIMO system in the pres-

ence of interference, a space-time-frequency adaptive pro-

cessing approach is developed. This approach enables in-

creased received power and an increased coherence interval

compared to spatial-only approaches.
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Fig. 2. For a doubly dispersive 10 × 2 MIMO channel, his-

tograms of received power at a maximum SINR receive beam-

former are displayed for space-time-frequency (stf), space-

time (st), and spatial-only (s) transmit beamformers relative

to a random transmit beamformer. The received signal is in

the presence 20 dB flat-fading, static interferer.
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