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ABSTRACT

In this paper, we propose estimating the velocity of a tar-
get using a widely distributed multiple-input multiple-output
radar that employs multiple pulse repetition frequencies. In a
MIMO radar, it is possible to use different PRFs in different
transmitters without added complexity. This allows one to in-
crease the number of pulses for estimation without decreasing
the unambiguous range or increasing the time the target needs
to be illuminated. We derive a maximum likelihood estimator
for the velocity of the target under the assumptions that the
scattering is independent and noise spatially and temporally
white.

Index Terms— MIMO radar, Maximum likelihood esti-
mation

1. INTRODUCTION

In a distributed multiple-inputmultiple-output (MIMO) radar,
the transmitters and receivers are spatially distributed so that
a target is seen from several aspects simultaneously creating
angular diversity in the system[1]. This approach differs from
the MIMO radar with colocated antennas[2,3], although both
MIMO radar types use multiple waveforms to improve the
performance.
Target velocity estimation with a widely distributedMIMO

radar system has been previously studied in [4–6], but the ve-
locity was estimated from the Doppler shift in a single pulse.
Such estimation procedure might not be accurate enough
in many radar system and, consequently, many operational
radars are pulse Doppler radars. An estimator using sev-
eral pulses was derived in [6], but pulse repetition frequency
(PRF) was not considered at all.
Pulse Doppler radars operate by transmitting a sequence

of pulses. The radial velocity of the target can then be de-
termined from the phase differences of the received pulses.
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The PRF that is used has an impact on both the range and the
velocity estimates. When the PRF is increased, the maximum
unambiguous velocity increases but the largest unambigu-
ous range decreases. This phenomenon is commonly called
range–Doppler ambiguity problem.
Many different methods have been proposed and success-

fully applied to reduce the ambiguities in range and veloc-
ity in the pulse Doppler radar. The methods can be divided
mainly into staggered PRF, in which pulse repetition time
is varied, or multiple PRF that transmits several pulse trains
with different PRFs. When the multi-PRFmeasurements have
been obtained, there are several methods to obtain the un-
ambiguous estimates[7–9]. However, clutter cancellation is a
problem in the former and false coincidences in the latter[10].
On the other hand, the architecture of a distributed MIMO

radar lends itself to using multiple PRFs naturally. In this
paper, we examine the use of multiple PRFs in the estimation
of the target velocity using a distributed MIMO radar. This
differs from the methods used for mitigation of ambiguities in
networked radar systems proposed, for example, in [11]. We
derive a maximum likelihood estimator for the target velocity
under the assumptions that the waveforms are orthogonal, the
scattering from the target is independent, and noise is spatially
and temporally white.
This paper is organized as follows: The signal model is

discussed in Section 2 and velocity estimation in Section 3.
Numerical results will be provided in Section 4. Finally, con-
clusions are drawn in Section 5.

2. SIGNAL MODEL

We consider a distributed radar system with M transmitters
and N receivers. The k-th pulse transmitted by the m-th
transmitter and received by the n-th receiver can be written
in baseband as

rnm(t, k) =
√

Pnmcnmsm(t − kTm − τnm(k))

×ej2πfnmte−j2πfcτnm(k) + wn(t),
(1)
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where Pnm is a power parameter, cnm the scattering coeffi-
cient, sm the signal transmitted by the m-th transmitter, Tm

the pulse repetition time, τnm(k) the pulse-dependent time
delay, fnm the Doppler shift, fc the carrier frequency, andwn

is the noise and interference term. Any unknown oscillator
phase terms can be included into cnm. Denoting the trans-
mitter position by xm, the receiver position by xn, the target
position by xb, and the target velocity by v in 3-D space, the
Doppler frequency can be written as

fnm =
1

λ
vT

(
xb − xm

‖xb − xm‖ +
xb − xn

‖xb − xn‖
)

, (2)

where λ is the carrier wavelength.
We assume that the scattering coefficients cnm are i.i.d.

zero-mean circular complex Gaussian random variables with
unit variance corresponding the Case 1 in the Swerling scat-
tering model[12], as was discussed in [13]. We also assume
that the noise wn(t) is temporally and spatially white with
variance σ2

w , for the sake of simplicity.
Let us assume without loss of generality that the lowest

pulse repetition frequency is 1/T1. Furthermore, there are
K1 pulses with this PRF that can be used for target parameter
estimation. The number of pulses available from the m-th
transmitter is then

Km =

⌊
K1

T1

Tm

⌋
. (3)

We assume that the transmitted signals have sufficient
orthogonality properties and that the Doppler frequency has
negligible effect on the waveforms so that matched filtering
can be donewith signal sm(t−pTm−τ̂nm)ej2πf̂nmtej2πfc τ̂nm .
The estimated time delay τ̂nm can be obtained by dividing the
entire search area into sufficiently small bins and testing if a
target can be found in a particular bin. We assume that f̂nm is
obtained from a bank of matched filters, but it is not accurate
enough to estimate the velocity of the target with sufficient
precision.
In addition, it is assumed that

sm(t + τ̂nm − τnm(k)) ≈ sm(t) (4)

which means that the target remains in the same range bin
over the observation perdiod. The same does not hold for the
phase of the pulse however, as the target is moving within
the bin. Since the motion of the target is small during the
period between two pulses compared to the distance to the
transmitter and receiver, it is possible to write

τ̂nm − τnm(k)

≈kTm

λfc

(
vT xb − xm

‖xb − xm‖ + vT xb − xn

‖xb − xn‖
)

(5)

by using the Taylor series of square root. This approximation
can also be thought as only considering the movement of the

target along the line between the transmitter and the target
as well as along the line between the target and the receiver.
Thus,

ej2πfc(−τnm(k)+τ̂nm) ≈ ej2πkTmfnm , (6)

and the signal after matched filtering can be written as

ynm(k) =
√

PnmGcnmej2πfnmkTm + w̃nm(k). (7)

G is a gain resulting from matched filtering. Due to the or-
thogonality of the filters, the filtered noise w̃n(t) is assumed
to have the same statistics as the noise before the filtering.
Next, we stack the matched filter outputs from different

MIMO branches into a column vector

y = [y11(0), y11(1), . . . , y11(K1 − 1), y12(0), . . . ,

y12(K2 − 1), . . . yNM (0), . . . , yNM (KM − 1)]T .

This vector can be written as

y =
√

GFP1/2c + w̃, (8)

where F is a matrix with
∑M

m=1 Km rows andMN columns
defined as

F =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ej2πf110T1 0 . . .
...

ej2πf11(K1−1)T1 0 . . .
0 ej2πf120T2 0 . . .

...
0 . . . ej2πfNM (KM−1)TM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P = diag(GP11, GP12, . . . , GPNM ),

c is a vector containing the scattering coefficients defined as

c =
[
c1,1 c1,2 . . . cN,M

]T

and n is the filtered noise vector formed similarly as y.

3. TARGET VELOCITY ESTIMATION

In this section, we derive a maximum likelihood estimator for
the target velocity using the matched filter output vector.
Since both n and c are Gaussian, the matched filter output

vector is distributed as

y ∼ CN (0,FPFH + σ2
wI). (9)

As P consists of the filtering gain and line-of-sight propaga-
tion attenuation coefficients, we can assume it to be known
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since we are dealing with a known location of the target. The
log-likelihood function can be written as

L(y;v) = − yH(FPFH + σ2
wI)−1y

− log
[
π
∑

m
Km det(FPFH + σ2

wI)
]
.
(10)

Looking at the covariance matrix, we can see that it is in fact
block-diagonal:

FPFH + σ2
wI

=

⎡
⎢⎣
GP11f11f

H
11 + σ2

wI

GP12f12f
H
12 + σ2

wI

. . .

⎤
⎥⎦ ,

where

fnm =
[
ej2πfnm0Tm . . . ej2πfnm(Km−1)Tm

]T
,

i.e. each block is a sum of a diagonal and rank-1 matrix. Be-
cause fH

nmfnm = Km as the modulus of each element in the
vector equals one, the eigenvalues of this matrix are σ2

w and
Km + σ2

w, m = 1 . . .M . Therefore, the determinant is inde-
pendent of the target velocity v.
Using the matrix inversion lemma, the inverse of the

block-diagonal covariance matrix can be written as

(FPFH + σ2
wI)−1

=
1

σ2
w

⎡
⎢⎢⎢⎣
. . .

I − GPnm

σ2
w

fnmf
H

nm

1+σ−2

w GPnmfH

nm
fnm

. . .

⎤
⎥⎥⎥⎦ .

(11)

This simplifies the log-likelihood function, which can be writ-
ten as

L(y;v) = A − 1

σ2
w

M∑
m=1

N∑
n=1

‖ynm‖2 − GPnm|fH
nmynm|2

σ2
w + GPnmKm

,

(12)
where A is a constant and ynm is a vector containing the
matched filter output for the pulses from transmitterm to re-
ceivern. Therefore, in order to get theML estimate, it suffices
to maximize

J(v) =

M∑
m=1

N∑
n=1

GPnm

σ2
w + GPnmKm

|fH
nmynm|2 (13)

with respect to v, i.e.

v̂ML = arg max
v

J(v). (14)

The maximization can be understood as trying to find v such
that the vectors fnm are as parallel as possible to matched
filter output vectors while giving more weight to the pulses

Table 1. Difference to the baseline SNR in dB for each Tx–
Rx branch in the example.

Tx 1 Tx 2 Tx 3
Rx 1 0 0.8522 3.5999
Rx 2 −1.3637 −0.5115 2.2362
Rx 3 −2.3924 −1.5402 1.2075
Rx 4 0.4458 1.2980 4.0457

with high SNR. This is a simpler and more intuitive solu-
tion than the one derived in [6] by considering the scattering
coefficients c to be unknown deterministic parameters. The
objective function J is nonconvex, but if SNR is sufficiently
high, there is a single maximum within the unambiguous ve-
locity range. A numerical example of using the ML estimate
is shown in the next section.

4. NUMERICAL EXAMPLES

A numerical example demonstrating the use on the multiple
PRFs and the maximum likelihood velocity estimate is shown
in this section. This example uses the signal model for the
matched filter output developed in Section 2 and the derived
ML estimator to estimate the velocity of a single target on a
2-D plane.
In this example, the widely distributed MIMO radar sys-

tems consists of three transmitters located at (0, 0), (500, 500),
and (700, 2000). There are four receivers at (−500, 200),
(0, 0), (600, 0), (700, 3000). The target is at (−700, 2000)
and its velocity is (20,−20). All the transmitters use 0.5 GHz
carrier frequency.
In a single PRF case, all the transmitters use a PRF of

1.2kHz and transmit eight pulses. In the multiple PRF case,
the PRF of the second and third transmitters is twice as high
doubling the number of samples available for estimation from
these transmitters. The unambiguous range remains the same,
however, as the PRF of the first transmitter is not changed. It
was assumed that the path loss is inversely proportional to the
distance squared. The SNR of signal from first transmitter
received at the first receiver was chosen as the baseline, and
the difference in SNR of each received signal to this baseline
is shown in Table 1. Nelder–Mead simplex method available
in Matlab was used to do the optimization given in (14) to get
ML estimate for the velocity of the target.
Figure 1 shows the Mean square error of the velocity es-

timate. The MSE was calculated by averaging over 2000 in-
dependent trials for each SNR value. We have established the
Cramér–Rao bound of an unbiased estimator for this problem
but the derivation is omitted due to limited space. The CRB
is also shown in the figure. It can be seen in Figure 1 that
using multiple PRFs to increase the amount of samples avail-
able decreases the velocity estimation error. This benefit is
seen in both the CRB and the MSE.
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Fig. 1. Mean square error of the velocity estimate plotted with
the Cramér–Rao bound. It can be seen that using multiple
PRFs improves the actual estimate as well as the performance
bound

5. CONCLUSIONS

In this paper, we have considered using multiple pulse repeti-
tion frequencies in a widely distributed MIMO radar to esti-
mate the velocity of the target. In a MIMO radar, the different
pulse repetition frequencies can be employed at the different
transmitters without switching the pulse repetition time in a
single transmitter. An advantage of this scheme is that num-
ber of pulses available for estimation can be increased without
decreasing the unambiguous range or complicating detection
or estimation methods.
Starting from the matched filter outputs, we derived the

maximum likelihood estimator for the target velocity under
independent scattering and spatially as well as temporally
white noise. The derived estimator has an intuitive form and
is computationally efficient.
Several simplifying assumptions were made in the sig-

nal model considered in this paper. A less simplified model
should be used in future work. The impact of the multiple
PRFs on the locating the target should also be addressed while
considering joint detection and estimation.
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