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ABSTRACT
In order to reduce the number of transmissions between a set

of sensors and a fusion center in signal detection applications,

we propose an algorithm based on ordering and halting the

transmissions wisely, which can reduce the data transmission,

and thus expended energy and data rate, without sacrificing

signal detection performance. Here we consider the specific

case of noncoherent signal detection, where the log-likelihood

ratio turns out to be nonnegative, with independent observa-

tions form sensor to sensor. For this specific case, we design

a new ordering algorithm which provides very large savings

for some example MIMO radar systems considered for almost

all false alarm probabilities and signal-to-noise ratios (SNRs).

While these savings are demonstrated numerically, we also

prove analytically that savings of (N − 1)/N × 100% are

achieved for sufficiently small or large false alarm probabili-

ties and sufficiently large distance measures, a generalization

of SNR, for a very large class of signal detection problems

which employ N total sensors.

Index Terms— Energy efficient, MIMO radar, noncoher-

ent signal detection, ordered transmissions.

1. INTRODUCTION

In centralized noncoherent MIMO radar networks, the fusion

center generally collects data from all sensors. Sensors trans-

mitting data to the fusion center causes energy consumption

and increases communication requirements. Thus, when en-

ergy or communication resources are limited, for example

when the radar sensors are equipped self-contained energy

sources etc., we want to minimize the data transmissions be-

tween the sensors and the fusion center to save energy.

In most of the previous work on energy-efficiency for sen-

sor networks, energy saving is achieved at the expense of de-

tection performance. More recently, in [1], an approach for

energy and communication-efficient signal detection was de-

veloped in which sensor transmissions are ordered according

to the informativeness of their observations. The work in [1]

considered a hypothesis testing problem where the sensor log-

likelihood ratios, the optimum sensor statistic for cases with
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independent observations, could take on both nonnegative and

negative values. Further, a Bayesian hypothesis testing ap-

proach was considered that assumed prior probabilities to be

known.

In this paper, we describe an ordering approach for a class

of noncoherent signal detection problems where the sensor

log-likelihood ratios at each sensor can take on nonnegative

values. There are many practical binary hypothesis where this

is the case. Noncoherent MIMO radar target detection is an

important practical problems of this type. We show that the

new ordering approach significantly reduces the average num-

ber of transmissions, while achieving exactly the same perfor-

mance as if all data has been transmitted to the fusion center.

It is interesting that the ordering approach is only slightly dif-

ferent from the one in [1], the upper threshold in the stop-

ping rule is altered, but the resulting savings generally greatly

exceed those in [1] for the numerical examples considered.

Analytical results explain the reason for this by focusing on

some important limiting situations. We focus on the Neyman-

Pearson criteria. We note that these savings extend to cases

other than signal detection where a sum of sensor metrics are

computed which satisfy the assumptions made.

2. NEW ORDERED TRANSMISSION ALGORITHM

Consider a system with N networked sensors attempting to

solve a binary hypothesis problem under the following as-

sumption.

Assumption 1 Assume all sensors receive independent and
identically distributed (iid) observations, conditioned on the
binary hypothesis. For simplicity, assume each sensor uses
an orthogonal noise-free communication channel to transmit
its data to a fusion center.
Under Assumption 1, the optimum unconstrained (all N sen-

sors transmit) approach requires that each sensor computes

its sensor log-likelihood Lk, k = 1, ..., N based on its own

observation and sends Lk to a fusion center to form the over-

all test statistic for binary hypothesis testing. The optimum

unconstrained test statistic
∑N

k=1 Lk is compared to a fixed

threshold τ . A decision for H1 is made if the overall test

statistic is larger than τ , otherwise a decision for H0 is made1.

1The results in this paper are also valid for randomized tests.
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The next assumption quantifies what we mean by noncoher-

ent detection in this paper.

Assumption 2 The local metric computed at every sensor is
nonnegative such that Lk ≥ 0, ∀k.

We propose the following algorithm.

Algorithm 1 Consider an approach where the sensors order
their transmissions to the fusion center so that the sensor with
the largest sensor metric transmits its data to the fusion cen-
ter first. Denote the ordered sensor metrics as L[1] > L[2] >
· · · > L[N ]. Thus the first sensor to transmit will transmit
L[1] = max(L1, . . . , LN ) and the next L[2], the next largest
in the set {L1, . . . , LN}, and so on. In fact, the sensors can
decide when to transmit in a completely distributed manner.
The kth sensor could transmit2 after a time equal to C/Lk for
some common constant C. After each transmission, the fusion
center accumulates the sum of all sensor metrics that have
been transmitted so far and compares this sum to two thresh-
olds τ and tL. Assume that after a given time all but nUT

sensors have transmitted. Denote the last sensor transmis-
sion as L[N−nUT] and define tL = τ − nUTL[N−nUT], where τ
is the previously defined fixed threshold for the unconstrained
optimum N -sensor test. If

N−nUT∑
k=1

L[k] > τ, (1)

we halt transmissions and decide for H1. Alternatively, if
N−nUT∑
k=1

L[k] < tL (2)

we halt transmissions and decide for H0. Otherwise we con-
tinue to transmit until all transmissions occur. Then we use
the optimum unconstrained (N -sensor) test.

The following theorem describes the capability of Algo-
rithm 1 to save transmissions.

Theorem 1 Consider a sensor network with N sensors which
is employing Algorithm 1 to solve a binary hypothesis test-
ing problem. Under Assumptions 1 and 2, the approach de-
scribed in Algorithm 1 will always make the same decision as
the optimum approach where all N sensors transmit, while
generally using a smaller average number of sensor trans-
missions.

Note that if all the sensors hear all the transmissions, then

each sensor can perform the computations to know when to

stop the transmissions. Otherwise, a single stop signal can

be broadcast to all sensors from the fusion center to halt the

transmissions.

The following assumption and theorem analytically ad-

dress the magnitude of the savings in some cases of great in-

terest.

Assumption 3 For the binary hypothesis testing problems
considered, we assume the existence of a distance measure s,

2While we use this approach in our numerical results, other approaches

are also possible as long as the ordering is maintained.

which describes the distance between observations under H0

and H1, such that Pr(Lk > τ |H1) → 1 as s → ∞ for any
finite τ .

Intuitively, Assumption 3 implies that as s gets larger it be-

comes easier to tell the difference between observations under

H0 and H1. Such distance measures can be found for many

hypothesis testing problems of practical interest. For exam-

ple, in many cases where we are testing noise only, H0, versus

signal-plus-noise, H1, the signal-to-noise-ratio (SNR) plays

the role of s. Later in Section 3, we show that for noncoher-

ent MIMO radar target detection, the SNR is an example of

the distance measure s as described in Assumption 3.

Define Ns as the number of transmissions saved and Nt

the number of transmissions after which a decision can be

made using Algorithm 1, then Ns = N −Nt.

Theorem 2 Under Assumptions 1-3 for the case where H1 is
true, the probability that only a single transmission is needed
when Algorithm 1 is employed with a finite τ approaches 1 as
s → ∞. It follows that E{Nt|H1} = 1 as s → ∞.

In the rest of this section, we focus on the Neyman-

Pearson hypothesis test, where the threshold τ is set by the

probability of false alarm, PFA.

Assumption 4 For the binary hypothesis testing problem
considered, PFA → 1 as τ → 0, and PFA → 0 as τ → ∞.
Further, 0 < Lk < ∞, ∀k with probability one under H0 or
H1.
Theorem 3 Assume the Neyman-Pearson criterion is em-
ployed and Assumptions 1-4 hold. If Algorithm 1 is em-
ployed, the probability that only a single transmission is
needed approaches 1 as PFA → 0, under the case where H0

or H1 is true. It follows that Pr(Ns = N − 1|Hj) → 1 as
PFA → 0 for j = 0, 1.
Theorem 4 Assume the Neyman-Pearson criterion is em-
ployed and Assumptions 1-4 hold. If Algorithm 1 is em-
ployed, the probability that only a single transmission is
needed approaches 1 as PFA → 1, under the case where H0

or H1 is true. It follows that Pr(Ns = N − 1|Hj) → 1 as
PFA → 1 for j = 0, 1.

3. ORDERING FOR NONCOHERENT MIMO
RADAR TARGET DETECTION

3.1. Problem Formulation
Consider a MIMO radar system that has M transmit and N
receiver antennas under the simplified assumtions we now

describe3. The transmit antennas are placed at the known

positions (xt
l , y

t
l ), l = 1, · · · ,M and the receive antennas are

placed at the known positions (xr
k, y

r
k), k = 1, · · · , N in a

two-dimensional Cartesian coordinate system. The low-pass

equivalent of the signal transmitted from the l-th transmit-

ter is
√
Esl(t), where E denotes the transmitted energy per

transmit antenna, and the waveform is normalized so that∫∞
−∞ |sl(t)|2dt = 1. We are testing between hypothesis H0

3See [2] for extensions to most assumptions.
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(no target) and hypothesis H1 (a target moving with veloc-

ity (vx, vy) located at (x, y) is present). The time delay

τkl and Doppler shift fkl involved in the path from trans-

mitter l to receiver k, via the target reflection, are τkl =
(dtl + drk)/c and fkl = (vx(x

t
l − x) + vy(y

t
l − y))/(λdtl) +

(vx(x
r
k − x) + vy(y

r
k − y))/(λdrk) respectively, where c de-

notes the speed of light, dtl = [(xt
l − x)2 + (ytl − y)2]1/2

the distance between the target and the l-th transmitter,

drk = [(xr
k − x)2 + (yrk − y)2]1/2 the distance between the

target and the k-th receiver, and λ the wavelength of the

carrier. In the noncoherent processing approach, we assume

all transmitter and receiver nodes have oscillators which are

locked in frequency, possibly due to the use of a beacon.

We further assume the transmitted signals are approximately

orthogonal and maintain approximate orthogonality after re-

ception for time delays and Doppler shifts of interest [2]. The

noise corresponding to the kl-th path wkl(t) is a temporally

white, zero-mean complex Gaussian random process with

E{wkl(t)w
∗
kl(u)} = σ2

wδ(t− u), where σw is a constant, and

δ(t) is a unit impulse function. The noise components are

spatially white, such that E{wkl(t)w
∗
k′l′(u)} = 0 if l �= l′ or

k �= k′. Since scaling the observations changes nothing, we

set σ2
w = 1 without loss of generality.

For the noncoherent MIMO radar, the antennas are sep-

arated widely enough such that they are in different tar-

get beamwidths and the reflection coefficients for different

transmit-receive paths are independent. Denote the complex

reflection coefficient for the kl-th path by ζkl, which is as-

sumed to be a Gaussian random variable with variance σ2
kl

which remains constant over the observation interval. We

assume the values of σ2
kl for various l, k are known and finite,

possibly calculated from the known position probed for a

target. For simplicity, let us assume σ2
lk = σ2

ζ , ∀l, k. Thus,

the received signal can be modeled as

H1 : rkl(t) =
√
Eζklsl(t− τkl)e

j2πfklt + wkl(t) (3)

H0 : rkl(t) = wkl(t). (4)

The Neyman-Pearson optimum hypothesis test for H0 (no tar-

get) versus H1 is to compare the overall log-likelihood ratio

(LLR) [2]

L =

N∑
k=1

M∑
l=1

σ2
ζE

σ2
ζE + 1

∣∣∣∣
∫ ∞

−∞
r̃kl(t)s

∗
l (t− τkl)e

−j2πfkltdt

∣∣∣∣
2

=
N∑

k=1

Lk (5)

to a threshold set to fix the false alarm probability, where

r̃kl(t) represents the actual observed received signal. Since

L is chi-square distributed, we set the threshold as [3]

τ = [Eσ2
ζ/2(Eσ2

ζ + 1)]F−1
χ2
2MN

(1− PFA), (6)

where F−1
χ2
2MN

denotes the inverse cumulative distribution

Table 1. Minimum SNR (in dB) for which only one transmis-

sion is required under Algorithm 1. PFA = 10−3.

SNRmin N=2 N=10 N=20 N=30 N=40 N=50

M=2 20 13 13 14 15 15
M=3 15 12 13 14 14 15
M=4 13 12 13 14 14 15
M=5 12 11 13 14 14 15
M=6 11 11 12 14 14 15

function of a chi-square distribution with 2MN degrees of

freedom and PFA denotes the desired false alarm probability.

Next we show that for the noncoherent MIMO radar prob-

lem considered, the SNR, defined as SNR= σ2
ζE/σ2

w = σ2
ζE,

is a distance measure s of the type described in Assump-
tion 3. Under H1, plugging (3) into (5), we can rewrite

Lk =
∑M

l=1[σ
2
ζE/(σ2

ζE + 1)]|√Eζkl + zkl|2, where zkl =∫∞
−∞ wkl(t)s

∗
l (t − τkl)e

−j2πfkltdt denotes the output of the

matched filter with noise as an input. Since σ2
ζ and E are as-

sumed to be known and finite, for any nonzero realization of

ζkl and zkl we have Lk → ∞ as SNR→ ∞. Hence, for any fi-

nite τ , limSNR→∞ Pr(Lk > τ |H1) = Pr(∞ > τ |H1) = 1.

That is, Pr(Lk < τ |H1) → 1 as SNR→ ∞. This justifies

Assumption 3 for the noncoherent MIMO radar system where

SNR is considered as a distance measure.

3.2. Numerical Examples
Assume the target, if present, is located at (150m, 127.5m),

moving with velocity (50m/s, 30m/s), and gives σ2
ζ = 1. The

antennas are located along the circumference of a circle of ra-

dius 7000m centered at the origin. The transmit antennas are

equidistant from each other, and so are the receive antennas.

The carrier frequency is set to 1GHz.

Applying Algorithm 1 to the noncoherent MIMO radar

for target detection, Theorem 2 implies that a single trans-

mission is required to halt transmissions if the SNR is suffi-

ciently large. In Table 1, for various M and N , we provide

the minimum SNR (SNRmin), at which only one transmission

is required. It is seen that increasing M generally reduces

SNRmin and the reduction is substantial for small N , e.g. for

N = 2, SNRmin is almost halved when M is increased from

2 to 6. Increasing N initially decreases SNRmin but later in-

creases SNRmin, which appears to result from the initial in-

crease in performance due to the increase in diversity. This

benefit quickly decays with N and hence only overcomes the

increase in τ with N (see (6)) for small N .

Assume the number of receivers is N = 10 and the num-

ber of transmitters is M = 2, 4, or 8. We employ Algorithm 1
to halt transmissions and make decisions. Assuming H0 be-

ing true, Fig. 1 shows the average percentage saving plotted

versus the false alarm probability (PFA) when N = 10. The

average percentage saving is computed from E{Ns}/N ×
100%. We observe that for PFA = 1, the average percent-

age saving is 90%, which implies a single transmission as
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Fig. 1. Average transmissions saved versus PFA for N=10 and

M=2, 4, 8 under H0 hypothesis.
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Fig. 2. Average transmissions saved versus PFA for N=10 and

M=2, 4, 8 under H1 hypothesis. SNR=10 dB.

per Theorem 4. For 0 < PFA < 1, slightly more transmis-

sions are needed. Let PFAC(M,N) denote the minimum of

the corresponding curve for a plot similar to that in Fig. 1

when we employ M transmit antennas and N receive anten-

nas. The difference in the behavior for PFA above and below

the minimum PFAC(M,N) can be explained by Theorems 3
and 4. Note that in Theorem 3, for small PFA, the stopping

condition in (2) applies. On the other hand, in Theorem 4,

for large PFA, the stopping condition in (1) applies. Thus

PFAC(M,N) denotes the point where we switch from one

stopping condition dominating to the other dominating. The

results in Fig. 1 also show that E{Ns}/N × 100 →90 % [i.e.

E{Ns} → (N − 1) ] as PFA approaches zero, which agrees

with Theorem 3. As shown in the figure, the average number

of transmissions saved decreases with M for any fixed PFA

when H0 is true. This is is because increasing M leads to an

increase in τ for any given PFA as per (6), while no diversity

can be exploited in this noise-only scenario. We also notice

that PFAC(M,N) increases as M increases.

In Fig. 2, assuming that H1 is true and SNR= 10 dB, we

repeat the analysis of Fig. 1 and obtain similar findings that

can be used to verify the correctness of the results in Theorem
3 and 4 under H1 hypothesis. Further, it is seen that in this

case, the PFAC(M,N) of each curve takes on a much smaller

value than its counterpart in Fig. 1, and the average percent-

age saving at the PFAC(M,N) is bigger than that correspond-

ing value in Fig. 1. We see from Fig. 2, the average number of

transmissions saved increases with M for any fixed PFA when

H1 is true. Note that this contrasts with the result in Fig. 1

for H0 being true, and can be attributed to the extra diversity

gain obtained by increasing M . We have tested similar cases

with a different N and obtained similar conclusions.

4. CONCLUSION
We study a new method, called ordering, to reduce the num-

ber transmissions between a set of sensors and a fusion cen-

ter in signal detection applications. We focus on the specific

case of noncoherent signal detection, where the sensor log-

likelihood ratio turns out to be nonnegative, with independent

observations form sensor to sensor. While we change the ap-

proach in [1] only slightly, the savings appear to be much

larger than those demonstrated in [1] for cases where the sen-

sor log-likelihood ratio turns may be negative. In particular,

for some example noncoherent MIMO radar systems studied,

the savings are found to be much larger than those shown

in [1] for most useful false alarm probabilities and signal-to-

noise ratios (SNRs). While these savings are demonstrated

numerically, we also prove analytically that savings of (N −
1)/N×100% are achieved for sufficiently small or large false

alarm probabilities and sufficiently large distance measures, a

generalization of SNR, for a very large class of signal detec-

tion problems which employ N total sensors.
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