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ABSTRACT

The interaction between a smart target and a smart MIMO radar is
investigated from a game theory perspective. Since the target and
the radar form an adversarial system, their interaction is modeled as
a two-person zero-sum game. The mutual information criterion is
used to formulate the utility functions. The unilateral, hierarchical,
and symmetric games are studied, and the equilibria solutions are
derived.

Index Terms— MIMO radar, waveform, jamming, game theory,
hierarchical game, Stackelberg equilibrium, Nash equilibrium.

1. INTRODUCTION

A MIMO radar emphasizes spatial complementarity and waveform
cooperation, and it may outperform a monostatic one on detection,
estimation, and information extraction [1–4]. Current works prefer
to investigate the interaction between a smart radar and a dumb tar-
get, where the former has some knowledge of the latter such as radar
cross section distribution, while the latter is incapable of interfering
with the former. With the development of electronic warfare, many
intelligent targets are equipped with countermeasure systems to pre-
vent a radar from operating as well as it might [5]. In this paper, the
interaction involves a smart target, which carries jamming equip-
ment that could intelligently confuse the radar. If the target always
tries to prevent a radar from fulfilling its task, their interaction can
be modeled as a two-person zero-sum (TPZS) game [6].

The mutual information (MI) criterion [1] is used to formulate
the utility functions. The radar controls the waveform matrix to max-
imize the MI, while the latter has some access to its jamming ma-
trix to minimize it. Based on the information set available for each
player, the games fall into one of the three categories: unilateral,
hierarchial, and symmetric. For the unilateral case, one player can
intercept the other’s strategy while the latter does not notice that this
is happening. The TPZS games are simplified as single person opti-
mizations, and the optimal (water-filling) strategies are derived. For
the second case, one player can intercept the other’s strategy while
the latter does notice that. The TPZS game is recast as a conserva-
tive minmax or maxmin two-stage optimization, and the Stackelberg
equilibria—optimization solutions—are derived. In the last case, no
player has the idea of the other’s strategy; its secure strategy pair is
a Nash equilibrium, of which the existence conditions are analyzed.

Note that a similar idea is recently used in polarimetric MIMO
radar detection [7]. This paper focuses on selected parts of [2]; the
remaining sections are as follows. Section 2 introduces the MIMO
radar signal model, and specifies the game criterion. Section 3 in-
vestigates unilateral games, while hierarchical ones are in Section 4.
Section 5 focuses on games with symmetric information. Section 6
includes numerical results, and then conclusions are drawn.
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2. MIMO RADAR V.S. JAMMER UNDER MI CRITERION

We are interested in the interaction of a smart MIMO radar system
and a smart target: the latter can interfere with the former via wave-
form independent noise. Let the radar system be comprised of nt

transmitters and nr receivers. Suppose that the transmitted wave-
form of the jth transmitter is sj , and then the collection echoes for
the MIMO radar is written as

Y = SH + J +W , (1)

where S = [s1, s2, · · · , snt ] is a K × nt transmitted waveform
matrix with K ≥ nt, K denotes the waveform length, H denote
the nt × nr path gain matrix, J denotes the K × nr jamming ma-
trix, W = [w1,w2, · · · ,wnr ] is the K × nr noise matrix, and Y
denotes the K × nr received signal matrix.

The radar-target interaction is investigated under a probability
framework, and four assumptions are adopted: A1) the columns of
W are i.i.d. Gaussian vectors with probability density function (pdf)
CN (0,Rw); A2) the target is comprised of a large number of small
i.i.d. random scatterers. With the central limit theorem, the columns
of H could be considered as i.i.d. Gaussian vectors with distribu-
tion CN (0, σ2

hInt) under sufficient antenna separation [4]; A3) the
columns of J are i.i.d. random vectors with distribution CN (0,Rb),
and A4) H , W , and J are mutual independent.

Suppose that the MIMO radar wants to extract MI between the
received signal Y and the path gain matrix H

I(Y ;H|S) = h(Y |S)− h(J +W ) (2)

in a contaminated environment, where h(·) denotes the (conditional)
differential entropy. As (Y |S) ∼ CN (0, σ2

hSSH +Rb+Rw) and
(J +W ) ∼ CN (0,Rb +Rw), we have

Ib � I(Y ;H|S) = nr log
det(σ2

hSSH +Rb +Rw)

det(Rb +Rw)
. (3)

The MIMO radar controls the waveform matrix S to maximize Ib,
while the target tries to minimize it with jamming matrix J . There-
fore, one player’s gain is the other’s loss, and this is a TPZS game
[6]. Ib is a function of S and Rb. The optimal strategy of one player
depends on its inference of the other’s.

The strategy domain of (3) is composed of two Hermitian ma-
trices: Rb and SSH . A direct interaction analysis in matrix domain
is rather complex, particularly when one player has no knowledge
of the other. As a Hermitian matrix is determined by its eigenvec-
tors and eigenvalues, the TPZS game actually implies two parts:
eigenspace selection (where to play) and eigenvalue optimization
(how to allocate power). Conservatively, if one player could not pre-
cisely infer the other’s power allocation, staying at the eigenspace
defined by Rw would be a secure choice [2].

Here is another assumption: A5) the radar and target choose the
eigenspace of Rw in game playing. Following this assumption, let
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the eigendecomposition of Rw be Rw = UwΛwU
H
w , and then

those for SSH and Rb could be respectively expressed as SSH =
UwP 1ΓsP

H
1 UH

w and Rb = UwP 2ΛbP
H
2 UH

w , where P 1 and
P 2 are two arbitrary permutation matrices. Since the dimension of
signal subspace is nt, the eigenvalue matrix Γs can be written as

Γs =

ï
Λs

0(K−nt)×(K−nt)

ò
, (4)

where Λs = diag([σs
1, σ

s
2, · · · , σs

nt
]). Let the diagonal elements

of Λw = diag([σw
1 , σ

w
2 , · · · , σw

K ]) be in decreasing order σw
1 ≥

σw
2 ≥ · · · ≥ σw

K , while those of Λb = diag([σb
1, σ

b
2, · · · , σb

K ])
do not have any ordering requirement. Without loss of generality,

define the waveform matrix as S � UwP 1

[√
Λs,0nt×(K−nt)

]T
,

and then the MI at the equilibrium is specified as

Īb = nr log
î
det

(
σ2
hΓsP 1(Λb +Λw)

−1P T
1 + IK

)ó
, (5)

where Γs will reduce the dimension of the game space from K to
nt, and P 1 decides which subspace would be selected.

3. UNILATERAL GAMES

3.1. Radar Unilateral Games

If the MIMO radar knows the target’s strategy while the latter does
not notice that, the game degenerates to a unilateral power allocation
problem [1], where the radar properly assigns its power into the noise
(jamming) space to maximize the MI

max
Λs,P 1

Īb, s.t. Tr(SSH) = Tr(Λs) ≤ Ps, (6)

where Ps denotes the available waveform power. Without loss of
generality, we assume σb

1 + σw
1 ≥ σb

2 + σw
2 ≥ · · · ≥ σb

K + σw
K

and σs
1 ≥ σs

2 ≥ · · · ≥ σs
nt

in this subsection. With the Hadamard
theory [1], (6) is maximized if P 1 is chosen as P 1 = P , where

P �

⎡
⎣

1
...

1

⎤
⎦ , (7)

and then we have

max
σs
i

nt∑
i=1

log

Å
σs
i σ

2
h

σb
K+1−i + σw

K+1−i

+ 1

ã
, s.t.

nt∑
i=1

σs
i ≤ Ps. (8)

The objective function is concave and monotonically increasing;
its optimal solution can be obtained via Lagrange multipliers, and
yields a water-filling strategy [1]

σs
i =
Ä
λ1 − σb

K+1−i + σw
K+1−i

σ2
h

ä+
, (9)

where (x)+ � max{0, x}, and λ1 is chosen via
∑nt

i=1 σ
s
i = Ps.

3.2. Target Unilateral Games

On the other hand, suppose that the target knows the power alloca-
tion strategy of the MIMO radar. The game degenerates to a jam-
ming unilateral optimization, as the radar is not aware of this. In
such a circumstance, the target will properly allocate its jamming

power to minimize Īb. Mathematically, this is expressed as

min
Λb

Īb, s.t. Tr(Λb) ≤ Pb, (10)

where Pb bounds the jamming power. For a given radar power al-
location strategy, P̄ 1 plus Λ̄s = diag([σ̄s

1, σ̄
s
2, · · · , σ̄s

nt
]), the opti-

mization (10) is specified as

min
σ̄b
i

nt∑
i=1

log

Å
σ̄s
i σ

2
h

σ̄b
i + σ̄w

i

+ 1

ã
, s.t.

nt∑
i=1

σ̄b
i ≤ Pb, (11)

where σ̄b
i and σ̄w

i correspond to the ith selected jamming-noise sub-
space, and they are not necessarily identical to σb

i and σw
i . As the

objective function is monotonically decreasing and strictly convex,
its optimal solution can be uniquely found with Lagrange multipliers

σ̄b
i =

Å…
σ̄s
i σ

2
h

λ2
+

(σ̄s
i σ

2
h)

2

4
− σ̄w

i − σ̄s
i σ

2
h

2

ã+

. (12)

where λ2 > 0 satisfies
∑nt

i=1 σ̄
b
i = Pb. Since the subspace selection

privilege belongs to the radar, the target can only optimize its power
corresponding to the selected subspace.

4. HIERARCHICAL GAMES

4.1. Target As The Leader

Let the radar system (the follower) possess sufficient interception ca-
pacity that it can immediately sense interference. If the target (the
leader) knows this and behaves conservatively, the game may con-
verge to a Stackelberg equilibrium (SE) [6], which is defined as the
solution of a two-stage optimization [6]

min
Λb

max
Λs,P 1

log
î
det

(
σ2
hΓsP 1(Λb +Λw)

−1P T
1 + IK

)ó

s.t. Tr(Λb) ≤ Pb, Tr(Λs) ≤ Ps.
(13)

The interception capability enables the radar to guarantee an optimal
power allocation response for an arbitrary strategy from its oppo-
nent, so the results in Subsection 3.1 are still applicable for the first
stage. Based on (9), (13) is reduced to

min
σb
i

nt∑
i=1

log

Å
σs
i σ

2
h

σb
K+1−i + σw

K+1−i

+ 1

ã

s.t. σs
i =
Ä
λ1 − σb

K+1−i + σw
K+1−i

σ2
h

ä+
, (14)

σb
1 + σw

1 ≥ σb
2 + σw

2 ≥ · · · ≥ σb
K−nt+1 + σw

K−nt+1,

nt∑
i=1

σs
i = Ps,

K∑
i=1

σb
i ≤ Pb.

Lemma 1: The power allocation SE for the hierarchical game
with the target as the leader is

σb
i = (λ3 − σw

i )
+, 1 ≤ i ≤ K (15)

σs
j =
Ä
min
¶
λ1 − λ3/σ

2
h, λ1 − σw

K+1−j/σ
2
h

©ä+
, 1 ≤ j ≤ nt,

where λ3 and λ1 are obtained via
∑K

i=1σ
b
i = Pb and

∑nt
i=jσ

s
j =

Ps.
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Proof: Proof can be found in [2].

Intuitively, the SE can be interpreted as a two-step water-filling
as shown in Fig. 1 (a): firstly, the target conservatively fills its jam-
ming power to the noise space, and then the radar injects its power
to jamming-plus-noise space.

4.2. Radar As The Leader

Let the target be able to sense the radar’s power allocation, and let
the MIMO radar know that it does. Then a conservative radar system
may select its strategy based on

max
Λs,P 1

min
Λb

log
î
det

(
σ2
hΓsP 1(Λb +Λw)

−1P T
1 + IK

)ó

s.t. Tr(Λb) ≤ Pb, Tr(Λs) ≤ Ps

(16)

in order to optimize the worst case. As for (16), the first stage in-
cludes an unknown subspace selection parameter P 1; direct opti-
mization is hard. But from rationality considerations we know the
radar system will not ‘pour’ its power to the (K − nt) subspaces
with higher noise levels, because that will make the final result even
worse. Let the radar choose the nt noise subspaces corresponding to
eigenvalues σw

K+1−i’s, where 1 ≤ i ≤ nt. Without losing general-
ity, one possible choice is P 1 = P . Hence, (16) is recast as

max
σs
i

min
σb
i

nt∑
i=1

log

Å
σs
i σ

2
h

σb
K+1−i + σw

K+1−i

+ 1

ã
,

s.t.

nt∑
i=1

σb
K+1−i ≤ Pb,

nt∑
i=1

σs
i ≤ Ps.

(17)

In addition to the optimization ordering, there is another significant
difference between (14) and (17): the jamming power constraints.
In the case of (14), the target moves first. It will conservatively fill
its power to the entire noise space; therefore, the power constraint
is
∑K

i=1 σ
b
K ≤ Pb. In the case of (17) the radar moves first, so the

target can ‘see’ which subspaces are selected, and then it will pour
the jamming energy only to them. Hence, the power constraints are
modified to

∑nt
i=1 σ

b
K+1−i ≤ Ps in (17), and this can be regarded

as a game in a reduced space.

Lemma 2: The power allocation SE for the hierarchical game
with the radar as the leader is

σb
i = 0, 1 ≤ i ≤ K − nt

σb
i = (λ4 − σw

i )
+, K − nt + 1 ≤ i ≤ K (18)

σs
j =
Ä
min
¶
λ5 − λ4/σ

2
h, λ5 − σw

K+1−j/σ
2
h

©ä+
, 1 ≤ j ≤ nt,

where λ4 and λ5 are determined by
∑nt

i=1 σ
b
K+1−i = Pb and∑nt

i=1 σ
s
i = Ps.

Proof: Proof can be found in [2]

The SE is still a two-step water-filling in a reduced space; an
illustration is depicted in Fig. 1 (b).

4.3. Discussion

The equivalence of Lemma 1 and 2 is straightforward if K = nt.
This subsection discusses their relationship for K > nt. Com-
paring (15) and (18), we see that if and only if (iff) Pb is large
enough to activate the noise subspace corresponding to σb

K−nt
, say

Pb > Pn �
∑nt

i=1(σ
w
K−nt

− σw
K+1−i), the two lemmas will result

Target

Radar

(a) target as the leader

Noise

(b) radar as the leader
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 1. An intuitive explanation of the SEs for the two hierarchical

games: (a) target as the leader, and (b) radar as the leader. The

dimension of noise subspace is K = 9, while that of the signal

subspace is nt = 6. As for case (a), since the target moves first

and does not know which amongst the nt subspaces will the radar

choose, it has to allocate its power to the entire noise space (water-

filling). As for case (b), target moves late and can observe which

subspaces radar selected, so it only (water-filling) allocates its power

to the radar-selected-ones: 4-9.
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Fig. 2. The MI of at SEs as functions of Pb for the minmax and

maxmin games, where Ps = 40. If Pb ≤ Pn, the two curves over-

lap, while the former is always above the latter for Pb > Pn.

in different strategy pairs, and it is interesting that the power alloca-
tion strategies of the radar are identical in both cases. This can be
explained from two perspectives: 1) if Pb ≤ Pn, the two lemmas are
the same, so σs

j ’s are as well; 2) if σb
K−nt

> 0, we must have

σb
i + σw

i = λ3 (or λ4), for K − nt + 1 ≤ i ≤ K (19)

for both of them. Even though λ3 �= λ4, they will both induce a
uniform power allocation in the second step, and hence the strategies
remain identical. An immediate corollary of this phenomenon is
that the power allocation of the MIMO radar becomes uniform with
the increase of Pb for both games, because the jamming-plus-noise
subspaces, (σb

i + σw
i )’s, tend toward flat as shown in (19).

In the following, the phrase minmax (maxmin) game is used
for simplicity to indicate a hierarchical game with radar (target) as
leader.

5. GAMES WITH SYMMETRIC INFORMATION

This section studies the cases with symmetric information, where
neither player has knowledge of the other’s strategy. In such cir-
cumstances, the Nash equilibrium (NE) is a good tool to analyze the
outcome of the strategic interaction [6]. If a game is competitive and
has a unique pure-strategy NE, all the players prefer to stay at NE
under the assumptions of conservativeness and rationality. As for a
TPZS game with utility function f(a, b), where a is a minimizer
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Fig. 3. arget and radar power allocation strategies at SEs as functions

of Pb for the minmax and maxmin games, where Ps = 40.

and b is a maximizer, the pure-strategy NE (a∗, b∗) is defined as [6]

f(a, b∗) ≥ f(a∗, b∗) ≥ f(a∗, b), for ∀a �= a∗ and b �= b∗.
(20)

Informally speaking, the NE of a TPZS game on a continuous space
is the saddle point of its utility function, and no player can do better
by unilateral deviation. We need the following proposition.

Lemma 3: Let f(a, b) be a real valued function for a TPZS
game, where a ∈ A is a minimizer and b ∈ B is a maximizer.
Suppose Ā × B̄ �= ∅ are the solution subspace of

(a, b) = arg min
a∈A

max
b∈B

f(a, b) = arg max
b∈B

min
a∈A

f(a, b), (21)

and then we have that 1) if (a, b) ∈ Ā× B̄, and then (a, b) is a NE;
2) if (a, b) �∈ Ā × B̄, and then (a, b) could not be a NE.

Proof: Proof can be found in [6].

Lemma 4: The NEs for the MI based TPZS games are that: 1)
if K = nt, the NE exists and can be obtained via (15) or (18); 2) if
K > nt and Pb ≤ Pn, the NE exists and it is the common solution
of (15) and (18); 3) if K > nt and Pb > Pn, the NE does not exist.

Proof: Proof can be found in [2]
The existence of a NE depends on K, nt, Pn, and Pb. As for

K > nt, it may not always exist. The behavior of game players is
easy to predict if the NE exists; otherwise, it will depend on other
factors that are more intricate to formalize. Regarding a matrix zero-
sum game with finite strategies, one may resort to mixed-strategy ap-
proach, in which each player chooses a number of strategies with a
reasonable probability [6]. Interestingly, the existence of a pure- (or
mixed-) strategy NE is guaranteed in theory for a matrix zero-sum
game. The games in a continuous space naturally have an infinite
number of pure (and mixed) strategies. In the absence of a NE, strat-
egy analysis becomes rather difficult and heuristic. Although the
game may not converge to a stationary strategy pair in this case, the
players at least can play the minmax or maxmin strategy to avoid the
worst case.

6. NUMERICAL RESULTS

This subsection concentrates on the hierarchical games. In simula-
tions, we set nt = 4, nr = 6, and K = 6. The noise powers
are respectively chosen as σw

1 = 10, σw
2 = 8, σw

3 = 7, σw
4 = 4,

σw
5 = 2, and σw

6 = 1. Finally, σh = 1 for simplicity. Ps is fixed
at 40, while Pb varies from 1 to 40. The MI of minmax and maxmin
solutions for the hierarchical games are depicted in Fig. 2. Clearly,

both of them are decreasing functions of Pb. Moreover, if Pb is be-
low a certain level, Pn = 18, the minmax and maxmin solutions are
the same, while the minmax curve is always above the maxmin one
if Pb > Pn. This coincides with the theoretical analysis in Section
4. The dashed threshold line also acts the bound for the existence of
pure strategy NE for the games with symmetric information.

Fig. 3 shows their power allocation equilibria. The equilibria
perform like a two-step water-filling: firstly, a noise subspace with a
low σw

i obtains more jamming power; secondly, the subspace with a
small (σb

i +σw
i ) will obtain more waveform energy. From Fig. 3, we

observe that all the six σb
i ’s will be sequentially activated with the in-

crease of Pb for the minmax results, while only σb
j ’s, 3 ≤ j ≤ 6, will

be sequentially activated for the latter. From Fig. 3(c), we know that
the waveform power allocation strategy tends toward uniform with
an increase of Pb. Here is an explanation. If Pb is sufficiently large,
all the selected σb

i ’s will be activated in the first water-filling step;
therefore, we have σb

i + σw
i = λ for ∀i. As the σs

i ’s are obtained by
a water-filling on (σb

i +σw
i )’s, the optimal power allocation strategy

becomes uniform. Note that since the waveform power allocation
strategies are the same for both games, only one plot is shown.

7. CONCLUSIONS

The interaction between a target and a MIMO radar – both smart –
is modeled as a two-person zero-sum game under the mutual infor-
mation criterion. Unilateral, hierarchical, and symmetric games are
studied based on the available information set for each player. The
optimal strategies for the unilateral games are forms of water-filling,
and they can be analytically derived via constrained optimization
techniques. Assuming conservativeness and rationality, the optimal
strategies for the hierarchical games are Stackelberg equilibria, of
which the closed-form expressions can be considered as two-step
water-fillings. Nash equilibria are the optimal strategies for the third
case; its existence conditions are discussed.
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