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ABSTRACT
In prior work, we proposed a method for vocabulary acqui-

sition based on a co-occurrence model and non-negative ma-

trix factorization. The vocabulary is described in terms of

co-occurrence statistics of frame-level acoustic descriptions

and suffers from poor scalability to larger vocabularies. Much

like whole-word HMM models, there is no reuse of a sub-

word units such as phone models. In this paper, we apply

the co-occurrence framework to learn a set of sub-word units

unsupervisedly using a matrix tri-factorization and propose a

method for computing their posteriorgram and finally show

vocabulary acquisition from the posteriorgram. The method

outperforms our prior work in that it can learn from a smaller

set of labeled data and shows a better recognition accuracy.

Index Terms— semi-supervised learning, vocabulary ac-

quisition, pattern discovery, spectral embedding

1. INTRODUCTION

Computational approaches to language acquisition have re-

ceived increasing attention over the years [1, 2] because of

their relevance in cognitive robots and in the modeling human

language acquisition. In this research, a first task is to discov-

er words in speech where the transcription is lacking. (Weak)

Supervisory information may only occur from utterance-level

labels stemming from detected events in other modalities like

the video inputs [1], or the ground word tags [2].

Some models for unsupervised or weakly supervised spo-

ken pattern discovery have been proposed, such as segmental

dynamic time warping (DTW) [3] and DP-ngrams [4]. They

search for recurrent acoustic patterns based on the local align-
ment of segments in training data. Those recurrent traces

are subsequently associated to vocabulary patterns. In previ-

ous work based on co-occurrence statistics and non-negative

matrix factorization (NMF), we have proposed an alterna-

tive model for unsupervised vocabulary discovery, which per-

formed well on a small database [5]. The NMF model de-

composes the data into recurrent parts, so it is supposed to
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have a global view of the data. The problem of this model is

its restricted scalability to large vocabularies and the lack to

view speech as a time series, which are actually two strengths

of hidden Markov models (HMM). So the contribution of this

paper is to discover hidden units and their transitions, i.e. an

HMM-like probabilistic graph model, from the co-occurrence

statistics.

The recently proposed spectral learning/embedding mod-

els of HMM show strong relations between co-occurrence

statistics of observations and the hidden states [6, 7]. So

we can discover sub-structures or hidden units from the dis-

covered recurrent structures represented by the co-occurrence

statistics with the idea of spectral embedding, i.e. matrix tri-

factorization. It has two advantages. One is to find correct

reusable intermediate units to improve the semi-supervised

learning process (this paper) as in deep learning [8], an im-

portant step towards large vocabularies based on reusability of

the units (future work). The other is to obtain an HMM-like

probabilistic graph model but without the frame-level strict

Markovian assumption for automatic speech recognition (AS-

R) (future work).

In this paper, we first extract repeated structures repre-

sented in the histogram of acoustic co-occurrences from par-

tial or the complete training data. Then each extracted co-

occurrence structure is modeled as an HMM-like probabilis-

tic graph of the underlying hidden sub-word units using non-

negative matrix tri-factorization (NMTF). A sequential label-

ing approach is subsequently applied to transform the rep-

resentation of utterances from the acoustic level to the level

of sub-word units. Experiments on vocabulary discovery are

conducted to evaluate the two kinds of representations: acous-

tic co-occurrences and co-occurrences of sub-word units.

2. EXPLOITING AND UTILIZING HIDDEN UNITS

2.1. Tri-factorization learning of hidden units

Suppose an utterance is represented by its Gaussian posteri-

orgram, i.e. if xt (1 ≤ xt ≤ M , and M is the number of

Gaussians) denotes the Gaussians that generated the signal

analysis frame at time t, the posteriorgram is {P (xt), t =
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1 : T}. P (xt) is the vector of Gaussian posterior probabil-

ities of frame t, i.e. (P (xt))i = P (xt = i). The potential

hidden units it contains can be discovered from the following

relations.

P (xt = i, xt+τ = j)
=

∑
k,l P (xt = i|yt = k)

P (yt = k, yt+τ = l)P (xt+τ = j|yt+τ = l)
(1)

where, i, j are the Gaussian indices, k, l are the indices of the

hidden units, τ is the temporal parameter to define contextu-

al dependencies between frames, and {P (yt), t = 1 : T}
with (P (yt))i = P (yt = i) is the posteriorgram of the utter-

ance labeled by the hidden units. P (xt = i, xt+τ = j) and

P (yt = k, yt+τ = l) are joint probabilites of Gaussians and

the hidden units respectively.

The matrix formulation of Eq.(1) is Cτ = ABτAT where

Cτ
ij = P (xt = i, xt+τ = j) and Bτ

kl = P (yt = k, yt+τ = l).
We assume Aik = P (xt = i|yt = k) = P (xt+τ = i|yt+τ =
k), i.e. the association matrix A between Gaussians and hid-

den units is time invariant because the dynamic behavior of

hidden units is only reflected in Bτ . With multiple τ ’s, the

learning algorithm of A,Bτ from Cτ is shown in Table 1.

2.2. Extraction of recurrent structures represented by the
Gaussian co-occurrences

The quality of the hidden units obtained from the tri-factorization

learning depends on the quality of the estimate of the joint

probability Cτ . The learning model usually works well for

a low-rank decomposition which corresponds to some HMM

with a small number of states. Therefore R1 recurrent struc-

tures represented by Gaussian co-occurrences {Cr,τ , r =
1, . . . , R1} are first extracted from the training data by using

an unsupervised NMF model in Eq.(2) [5].

V ≈WH (2)

In the NMF model, each column of matrix V is the

representation of a training utterance by its accumulated co-

occurrence probabilities of Gaussians, which is obtained by

flattening the matrix of accumulated co-occurrence probabil-

ities of Gaussians,
∑T−τ

t=1 P (xt = i, xt+τ = j), to a vector.

Multiple contextual dependencies of τ are allowed, each of

which produces a co-occurrence vector. The co-occurrence

vectors of the same utterance are stacked to form a super

vector as a column of V . With the factorization of Eq.(2),

we obtain the recurring structures represented by Gaussian

co-occurrences in the columns of W . Subsequently the sub-

vector of the column W:,r with the same τ is rearranged in

the M ×M Gaussian co-occurrence matrix Cr,τ , where τ is

the contextual dependencies and r is the column index of W
and 1 ≤ r ≤ R1.

Then {Cr,τ , τ = 1, 2, 3 . . .} are jointly factorized by the

algorithm in Table 1 to obtain Ar and Br,τ . Br,τ is initialized

with a sub-band diagonal structure to generate a left-to-right
chain model which will be called an HMM-like probabilistic
graph model. The learned hidden units are stacked as A =
[A1A2 . . . AR1 ] and Bτ = blkdiag(B1,τ , B2,τ , . . . , BR1,τ ).
The end units and head units of the Br,τ ’s are connected in

Bτ by filling small positive numbers at the corresponding lo-

cations. In this HMM-like probabilistic graph model, A per-

forms as the observation matrix, and Bτ performs as the tran-

sition matrix.

2.3. Construction of the posteriorgram of the hidden
units

Sequential labeling of the training and testing utterances are

performed by using the learned HMM-like graph model from

the training data. For the frame at time stamp t, we consider

three probability contributions for the hidden units: observa-

tion, forward transition and backward transition.

The first probability estimate for the hidden units, Po(yt),
comes from the observation at this time stamp P (xt) which

is a vector with Gaussian posterior probabilities. P (xt|yt =
k) in Eq.(3) is a column of the matrix A, so Po(yt) can be

estimated by NMF decoding.

P (xt) =
∑
k

P (xt|yt = k)Po(yt = k) (3)

The second estimate of the probability on the hidden units

is from the forward transition as is shown in Eq.(4).

(P
(τ)
f (yt))

T = (P (yt−τ ))
TT t

t−τ (4)

where T t
t−τ is the local transition matrix from frame t − τ

to frame t and P (yt−τ ) is the probability vector of hidden

units at time stamp t− τ . For each frame t, T t
t−τ is estimated

from the local co-occurrences of Gaussians, Ct
t−τ , by the fac-

torization Ct
t−τ = AT t

t−τA
T . Ct

t−τ is constructed from lo-

cal information: the Gaussian co-occurrence matrix between

P (xt−τ ) and P (xt). Subsequently, the estimates from the

forward transition with different τ ’s are summed and normal-

ized in Eq.(5) to obtain its final estimate. The summation here

means that the transition between hidden units is not strictly

Markovian and the status of the current frame t can originate

from any of its τ -nearest neighbor frames.

Pf (yt) =
1

τ0

τ0∑
τ=1

P
(τ)
f (yt) (5)

The third estimate of the probabilities on the hidden units

is from the backward transition which is decoded from Eq.(6).

Po(yt+τ ) and T t+τ
t are computed similarly as above by just

using the information with the respective time stamps.

(Po(yt+τ ))
T = (P

(τ)
b (yt))

TT t+τ
t (6)
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Table 1. Tri-factorization learning of hidden units with multiple contextual dependencies

1 Initialization of A,{Bτ}
2 While Stopping criteria is met

(1) P τ ← 1M×1 ∗
∑

i(A ∗ (Bτ + (Bτ )T ))i,:;
(2) Qτ ← Cτ � (A ∗Bτ ∗AT );
(3) A← A� (

∑
τ Qτ ∗A ∗ (Bτ )T + (Qτ )T ∗A ∗Bτ )� (

∑
τ P τ );

(4) Aik ← Aik/
∑

i′ Ai′k , Bτ
kl ←

∑
i′ Ai′k ∗Bτ

kl ∗
∑

i′ Ail;

(5) Bτ ← Bτ � (AT ∗ (Cτ � (A ∗Bτ ∗AT )) ∗A);

Then the estimates from the backward transition with dif-

ferent τ ’s are summed and normalized similarly in Eq.(7).

Pb(yt) =
1

τ0

τ0∑
τ=1

P
(τ)
b (yt) (7)

Finally, the estimate of P (yt) is the product of the prob-

abilities from observation, forward transition and backward

transition in Eq.(8). The product implies that the activated

hidden unit k of frame t should be both observable at this

frame and be reachable from its τ -nearest neighbors.

P (yt = k) =
Pf (yt = k)Po(yt = k)Pb(yt = k)∑

k′ Pf (yt = k′)Po(yt = k′)Pb(yt = k′)
(8)

3. VOCABULARY DISCOVERY

Every utterance is represented by the Gaussian posteriorgram,

{P (xt), t = 1, . . . , T}, and the hidden-unit posteriorgram,

{P (yt), t = 1, . . . , T}. We now compare the two kinds of

representations by performing weakly supervised spoken pat-

tern discovery. The task is to discover vocabulary patterns

with little human annotations. It is accomplished in the NMF

framework of Eq.(9).

[
G:,1:N1 0
X:,1:N1 X:,N1+1:N

]
≈

[
Q
Y

]
Z (9)

G is the ground truth matrix as supervision where its entry

Gsn shows the frequency of appearance of the ground word

s in the utterance n. N1 is the number of labeled training

utterances as supervision. During training, we always use all

the training data, but only have an increasing number N1 of

utterances labeled. Cognitively, this process means that an

agent or infant can hear a lot of utterances, but only a part of

them are interpreted by a teacher or parent.

X is the data matrix, a column of which represents an

utterance with its accumulated co-occurrence probabilities

of Gaussians or hidden units. To represent long contextu-

al dependencies, a long-patch method is utilized to define

the co-occurrences of units when constructing the data ma-

trix. Take the Gaussian posteriorgram P (xt) as an exam-

ple. A patch of length T0=10 of the posteriorgram is the

sum of the probabilities of units of the frames it contains:

P (xt) ←
∑t+T0

t′=t P (xt′). Then τ={1,2,3} are utilized to

compute co-occurrences between patches.

Y is the pattern matrix, each column of which is a learned

vocabulary pattern. Q reflects the associations between the

patterns and the ground words. Z is the coefficient matrix

whose columns are the weights of the discovered patterns in

the corresponding utterances. The columns of G, Y and X
are �1 normalized to fit the probabilistic definition.

4. EXPERIMENTS AND RESULTS

For simplicity, we evaluate the model by discovering digits

from the Aurora2/Clean database. The data set contains 11

English digits (“one” to “nine”, “zero” and “oh”) in 8438

training utterances and 1001 testing utterances from adult

male and female speakers. Each utterance contains a digit

string of length one through seven.

4.1. Acquire hidden units and posteriorgrams

The window length for spectral analysis was 20ms and the

frame shift was 10ms. For each frame, 12 MFCC coeffi-

cients were computed plus the log-energy. MFCC and its Δ,

ΔΔ features were concatenated to a 39-dimensional feature

vector on which a Gaussian mixture of M=1000 components

were obtained by unsupervisedly training a Gaussian Mixture

Model (GMM) with EM algorithm from the training data.

The number of recurrent structures of Gaussian co-

occurrences in Section 2.2 is R1=25. The contextual de-

pendency parameter τ=1,2,3. For each Cr,τ , 10 hidden units

are extracted. So there are 10*R1 hidden units in total.

4.2. Spoken pattern discovery

The common dimension between Y and Z, i.e. the number

of vocabulary patterns, is R2=12. The evaluation metric is

unordered word error rate by only considering the appearance

or not of digits without ordering them [5]. This metric can

focus the evaluation on the representation of the vocabularies.

As is shown in Figure 1, the hidden units perform much

better than the Gaussians with only a few labeled utterances,

but not with a sufficiently large number of labeled utterances.

This could be due to the lack of fine tuning of the hidden units.

As pointed out in [8], a top-down fine tuning with supervision

is important to help a multi-layer model beat its single-layer

5179



0

5

10

15

20

25

30

# Labeled utterances, N1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

84
38

U
no

rd
er

ed
 w

or
d 

er
ro

r 
ra

te
Gaussians
sub−word units

Fig. 1. The comparison of performance on vocabulary dis-

covery between Gaussians and sub-word units.

Table 2. Error rates after fine tuning (%)

N1 6000 7000 8438

Gaussians 1.38±0.00 1.35±0.00 1.24±0.00

hidden units 0.91±0.00 0.87±0.00 0.80±0.00

counterparts. Thus in the fine tuning stage, we use the ground

truth information to classify the structures extracted in Sec-

tion 2.2 into digits and silence and model silence with only 3

hidden units. Consistent improvement is observed in Table 2.

4.3. Visualization

Figure 2 shows the posteriorgram of the utterance “4625”

with the extracted hidden units. Piece-wise constant traces

or segments are observed from the figure. Some of the hidden

units have long durations like 5 to 8 frames which probably

corresponds to vowel parts, e.g. the segments of frames be-

tween 80 and 95, and the ones between 105 and 120. So it is

appropriate to name the hidden units “sub-word units”.

With the Viterbi alignment between an utterance and the

HMM-like graph model with A,Bτ , further smooth segments

are observed. One reason we don’t apply Viterbi alignment

here is that it is difficult to extend to two-dimensional data,

e.g. images.

5. CONCLUSION

We have successfully extended the NMF-based vocabulary

acquisition from co-occurrence statistics to now include a lay-

er of sub-word units that are learned without supervision us-

ing a matrix tri-factorization. The method performs better at

the acquisition of small vocabularies. The next steps are now

to show that the sub-words allow to handle larger vocabular-

ies and that it speeds up learning of new vocabularies. Fur-

thermore, the proposed co-occurrence model and labeling ap-

proach only considers the τ -nearest neighbors of a data frame,

making it a generic tool to extract patterns or topics from im-

ages.

(a) Spectrogram
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Fig. 2. Representations of utterance “4625”.

Finally, space limitations have not allowed us to elaborate

on the underlying graphical model, a tensor formulation of

the method, nor on the relation to HMMs, which will be the

topic of future publications.
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