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ABSTRACT
The framework of posteriorgram-based template matching has been
shown to be successful for query-by-example spoken term detec-
tion (STD). This framework employs a tokenizer to convert query
examples and test utterances into frame-level posteriorgrams, and
applies dynamic time warping to match the query posteriorgrams
with test posteriorgrams to locate possible occurrences of the query
term. It is not trivial to design a reliable tokenizer due to heteroge-
neous test conditions and the limitation of training resources. This
paper presents a study of using acoustic segment models (ASMs)
as the tokenizer. ASMs can be obtained following an unsupervised
iterative procedure without any training transcriptions. The STD
performance of the ASM tokenizer is evaluated on Fisher Corpus
with comparison to three alternative tokenizers. Experimental results
show that the ASM tokenizer outperforms a conventional GMM tok-
enizer and a language-mismatched phoneme recognizer. In addition,
the performance is significantly improved by applying unsupervised
speaker normalization techniques.

Index Terms— Spoken term detection, query-by-example,
acoustic segment model, posteriorgram-based template matching

1. INTRODUCTION

Spoken term detection (STD) refers to the task of automatically lo-
cating the occurrences of a specified query term in a large audio
archive. The query term may contain a single word or a sequence
of words. It can be given in the form of orthographic representa-
tions or query utterance examples [1]. The latter case is known as
query-by-example (QbyE) STD. STD technology is useful in vari-
ous applications, such as multimedia information retrieval, personal
entertainment, surveillance and security.

State-of-the-art STD systems [2] usually employ sophisticated
large vocabulary continuous speech recognition (LVCSR) engines to
convert speech utterances into textual representations, such as one-
best sequences or lattices. The detection of a query term then be-
comes a problem of string matching. While this kind of systems
provide high detection accuracy, a reliable and robust LVCSR sys-
tem is not always available. It requires a substantial effort of soft-
ware development and a large amount of transcribed speech and text
data, which can be satisfied in only a few tasks with plenty of re-
sources. Moreover, the detection performance is largely affected by
the vocabulary coverage. If a query term contains out-of-vocabulary
(OOV) words, the detection would fail.

Recently, a posteriorgram-based template matching framework
was proposed for QbyE STD [3]. This framework represents speech
segments by phoneme posteriorgrams, and matches query posterior-
grams with test posteriorgrams using the conventional dynamic time

warping (DTW) method, which has been used in template-based
speech recognition. This framework totally gets rid of the limitation
of vocabulary coverage, and thereby OOV is no longer an issue in
this framework. However training a phoneme recognizer requires at
least hours of labeled speech data. This is not feasible for many lan-
guages or dialects for which resources have never been developed. In
these cases, an intuitive approach is to utilize a phoneme recognizer
of another resource-rich language. This approach is based on the
assumption that the acoustic representations of some phonemes are
similar across languages. However the performance of this approach
inevitably suffers from the mismatches in language and speaking
styles. Recently several studies have contributed to unsupervised
STD, which emphasizes on unsupervised training of the tokenizer
without requiring any training transcriptions. For example, Gaus-
sian mixture model (GMM) is proposed to replace the phoneme rec-
ognizer in [4]. With unsupervised training, the mismatch between
the training data and test data can be significantly alleviated because
even the test data can be involved in the training process if necessary.

In this paper, we investigate the use of acoustic segment mod-
els (ASMs) as the tokenizer in the posteriorgram-based template
matching framework. ASMs are a set of self-organized sound units
which are intended to cover the overall speech characteristics of
available training data [5]. ASMs are obtained by an unsupervised
iterative training procedure without training transcriptions. Com-
pared with GMM tokenizers, ASM tokenizers have two advantages.
First, GMM training assumes independence among different speech
frames, while ASM training groups similar neighboring frames into
small segments and then establish models for these segments. In
other words, ASM training takes advantage of the temporal infor-
mation of speech, which is ignored in GMM training. The useful-
ness of temporal structure in speech processing has been proved and
exploited [6]. Second, GMM tokenizers represent each sound unit
by a single Gaussian component, while ASM tokenizers represent
each sound unit by an HMM, which is more accurate and flexi-
ble for modeling the distribution of speech data. Similar ideas of
applying self-organized sound units for STD have been proposed
in [7] and [8]. Our work differentiates from them by incorporat-
ing an ASM tokenizer into the posteriorgram-based template match-
ing framework. Within this framework, we made comparisons be-
tween the ASM tokenizer and other tokenizers including a GMM
tokenizer, a well-trained phoneme recognizer, as well as a language-
mismatched phoneme recognizer. In addition, our experimental re-
sults show that the performance of the ASM tokenizer can be signif-
icantly improved by applying unsupervised speaker normalization
techniques, and that a further performance improvement can be ob-
tained by combining the ASM tokenizer and the phoneme recogniz-
ers.
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The rest of this paper is organized as follows. Section 2 briefly
introduces the posteriorgram-based template matching framework
for QbyE STD. Section 3 presents the details of training ASM and
using the ASM tokenizer in the template matching framework. Ex-
perimental setup and results are presented in Section 4. We conclude
and discuss the future work in Section 5.

2. POSTERIORGRAM-BASED TEMPLATE MATCHING
FRAMEWORK

Figure 1 depicts the general framework of posteriorgram-based tem-
plate matching for QbyE STD. A tokenizer is first obtained from
training data. If the training data is given with training transcriptions,
this tokenizer is referred to as supervised, otherwise as unsupervised.
Using this tokenizer, query examples and test utterances are con-
verted into posteriorgrams. DTW is then applied to scan through the
test posteriorgrams and determine the best-matching region, which
has the smallest distortion with respect to the query posteriorgrams.

Query
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Posteriorgrams
DETECT by DTW

Detection

Score
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Data
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Fig. 1. Posteriorgram-based Template Matching Framework

2.1. Posteriorgram Representation

Given an observation feature vector ot, its posteriorgram PGot re-
flects the posterior distribution over a set of K predefined classes
{C1, C2, ..., CK}:

PGot = [p(C1|ot), p(C2|ot), ..., p(CK |ot)]T (1)

where p(Ci|ot) is the posterior probability of the ith class. The so-
called class here could be any kind of sound unit, such as phoneme,
Gaussian component, as well as ASM unit. Posteriorgrams can also
be utilized as a kind of features, known as posterior features. Com-
pared to standard spectral features, posteriorgrams are considered
to be more robust towards session and speaker variabilities [9]. The
posterior probabilities can be directly calculated according to Bayes’
theorem using likelihood estimation, or be modeled by discrimina-
tive classifiers, such as MLP. Alternatively, if using an HMM based
tokenizer, posterior probabilities can be derived from the decoding
lattices.

2.2. Detection by Dynamic Time Warping

Dynamic Time Warping (DTW) has been widely applied to solve
temporal sequence matching problems. Given two sequences of fea-
ture vectors, DTW finds the alignment path which minimizes the
global warping distortion score by dynamic programming. For key-
word detection, some variants of DTW are usually used to determine
which region in the test utterance provides the minimum distortion
from the query example. We use segmental DTW [4] in our im-
plementation of STD system. In this study, three computationally-
efficient distance metrics are considered as the DTW local distances
between two posteriorgrams u and v:

• Inner Product Distance

DIP = − log(uT v) (2)

Inner Product Distance measures the probability that u and v
are generated from the same underlying sound unit [3].

• Cosine Distance

DCos = − log(
uT v

|u||v| ) (3)

As a geometry metric, Cosine distance measures the orthog-
onality of u and v.

• Bhattacharyya Distance

DBhatt = − log(
K∑

k=1

√
ukvk) (4)

Bhattacharyya distance measures the contribution of individ-
ual elements by the square-root operator.

Note that all of the above distance metrics are defined in the log
probability scale.

3. ACOUSTIC SEGMENT MODELING APPROACH

The approach of acoustic segment modeling aims to establish a
speech tokenizer in an unsupervised manner, and apply the ASM
tokenizer for QbyE STD. We present the details of ASM training
in three steps, and then introduce our approach of using the ASM
tokenizer in the posteriorgram-based template matching framework.

3.1. Initial Segmentation

Given the observation sequence O = [o1, o2, ..., oT ], consecutive
observations are grouped into segments according to a criterion that
minimizes the following distortion:

D(O,S) =

S∑

s=1

bs∑

i=bs−1+1

d(oi, cs), (5)

where cs is the centroid of the sth segment, S is the number of seg-
ments, d(oi, cs) denotes the local distortion between oi and cs, and
bs−1 + 1 and bs are the beginning and ending observation indices
of the sth segment. In this study, the local distortion d(oi, cs) is set
to be Euclidean distance, and the agglomerative clustering method
[10] is adopted to determine the segment boundaries. Because the
number of segments is not known beforehand, a threshold is pre-set
for the total distortion. In addition, a segment duration constraint
is employed to prevent a segment from lasting for too long or too
short. The distortion threshold and duration constraint are adjusted
to balance the precision and the recall rates of the identified segment
boundaries on the development set.

3.2. Segment Labeling

After initial segmentation for all training utterances, a label is as-
signed to each resulted speech segment. In previous studies, this
was usually done by vector quantization (VQ) [11] or K-means clus-
tering [5]. Our work uses a different strategy based on GMM tok-
enization. A GMM is first trained from all training data. The num-
ber of Gaussian components is set to be the desired number of ASM
units, which is empirically determined. For each segment, we la-
bel it with the index of the Gaussian component which provides the
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highest likelihood of the speech segment. We design this strategy for
several reasons. First, each Gaussian component can be interpreted
as a broad acoustic class [12], which is in line with the aim of ASM
training. Second, GMM has been experimentally proven to be useful
as an alternative to phoneme recognizer [4, 13].

3.3. Iterative HMM Training

The initialized segment boundaries and labels are regarded as ini-
tial training transcriptions, with which ASMs are trained using an
iterative procedure described as follows:

1. Train an HMM model for each ASM unit based on the initial
transcriptions;

2. Use the existing HMMs to decode all training utterances. The
resulted ASM unit sequences are taken as new transcriptions.

3. Re-train the HMMs with the new transcriptions.

4. Repeat Step 2 and Step 3 until convergence.

This procedure jointly optimizes segmentation and model estima-
tion. In our experiments, it converges typically with only a few
iterations. The convergence criteria can be specified based on the
estimated likelihood of training data or recognition accuracy as in
[5]. Since our focus is on STD, we determine the iteration number
according to STD performance on the development set.

3.4. Applying ASM for Query-by-Example STD

We apply ASMs as the tokenizer in the posteriorgram-based tem-
plate matching framework. ASMs share similar structure as con-
ventional acoustic models in a phoneme recognizer. To transcribe a
speech utterance into posteriorgrams using the ASM tokenizer, we
first decode the utterance into ASM unit lattice, and then compute
frame-level posteriorgrams from the ASM unit lattice. Since the for-
mation of ASMs only depends on acoustic similarities, it would be
quite sensitive to non-linguistic factors, such as the characteristics of
speakers or the influence of environment. We alleviate this problem
by conventional speaker normalization techniques. Similar to unsu-
pervised speaker adaptation methods in speech recognition, the de-
coding sequence of each utterance is used as the true transcription.
With these transcriptions and ASMs, we can perform two feature-
level speaker normalization techniques: VTLN and CMLLR [14].
Since we assume no prior knowledge about the speaker information
of the test archive, both VTLN and CMLLR are applied on a per
utterance basis. For VTLN, the warping factor is determined by a
maximum-likelihood grid search from 0.80 to 1.25. For CMLLR, a
global transform is estimated for each utterance.

4. EXPERIMENTS

4.1. Experimental Setup

Within the framework of posteriorgram-based template matching,
we evaluate the QbyE STD performance of the ASM tokenizer with
comparison to three alternative tokenizers. The test archive, which
is chosen from a part of Fisher English Corpus1, contains 4638 ut-
terances with the duration ranging from 5 seconds to 15 seconds for
each utterance. 50 words are selected as query terms. For each query
term, 10 spoken examples are manually extracted from another part
of Fisher Corpus. The length of the query terms is from 4 phonemes

1Fisher English Training Speech Part 1 Speech Corpus, LDC

to 10 phonemes. The prior probabilities of the query terms occur-
ring in a test utterance vary from 0.30% to 1.32%. Similar to the
experimental configuration of [4], we use the TIMIT Corpus2 as the
development set to adjust system parameters.

Three evaluation metrics are used for evaluation: 1) average pre-
cision of top 10 hits (P@10); 2) average precision of top N hits
(P@N), where N is the number of target utterances containing the
query term in the test set; 3) mean average precision (MAP).

4.2. Alternative Tokenizers

We first explore the QbyE STD performances of three alternative to-
kenizers. One alternative is a BUT-style [15] English (EN) phoneme
recognizer trained from Switchboard Cellular Phase 1 Corpus, which
is well matched to the test condition. The second alternative is the
Hungarian (HU) phoneme recognizer developed by BUT. The Hun-
garian phoneme recognizer shares the same architecture as the En-
glish phoneme recognizer, but is language-mismatched with the test
condition. The third alternative is a GMM tokenizer trained with
10-hour Fisher Data which has no overlap with the test data. 39-
dimensional MFCCs processed by voice activity detection (VAD)
and utterance-based cepstral mean substraction (CMS) are used as
features to train the GMM tokenizer. The number of Gaussian com-
ponents which is tuned on the development set, is set to 60.

Table 1 shows the corresponding results with the three DTW lo-
cal distance metrics. It is not surprising that the well-trained English
phoneme recognizer performs the best among the three tokenizers.
Although the Hungarian phoneme recognizer is also well-trained
with enough training resources, the mismatch in language causes
significant degradation of detection performances, and relative drops
of 47.3%, 47.7% and 44.4% in MAP can be observed with the three
DTW distance metrics. On the other hand, the unsupervised GMM
tokenizer provides similar performances as the Hungarian phoneme
recognizer. This indicates that the usefulness of the GMM tokenizer
is also limited. It is seen that Bhattacharyya distance shows the best
overall performances among the three DTW distance metrics.

Table 1. Performances of Alternative Tokenizers
Tokenizers P@N P@10 MAP

DIP

EN 0.632 0.826 0.674
HU 0.364 0.490 0.355

GMM 0.373 0.510 0.359

DCos

EN 0.637 0.810 0.664
HU 0.355 0.492 0.347

GMM 0.354 0.498 0.342

DBhatt

EN 0.661 0.838 0.700
HU 0.394 0.520 0.389

GMM 0.375 0.508 0.358

4.3. ASM Tokenizer

We use the same training data of the GMM tokenizer to train the
ASM tokenizer. The number of ASM units is set to 60, which is
the same as the number of Gaussian components in the GMM tok-
enizer. Each ASM unit is modeled by a one-state HMM of 8 Gaus-
sian mixtures. We did not see obvious improvement using 3-state
HMM or more Gaussian mixtures on the development set. Table 2
shows the QbyE STD performances of the ASM tokenizer. With
Bhattacharyya distance, the ASM tokenizer achieves relative im-
provements of 8.27% in P@N, 11.4% in P@10, and 12.9% in MAP

2TIMIT Acoustic-Phonetic Continuous Speech Corpus, LDC
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compared to the GMM tokenizer. This demonstrates the advantage
of the ASM tokenizer.

We then examine the performances after applying the speaker
normalization techniques mentioned in Section 3.4. From Table 2,
we observe that the speaker normalization techniques improve the
detection performances substantially. With Bhattacharyya distance,
VTLN contributes to a relative 21.8% improvement in MAP, and
CMLLR contributes to a relative 10.9% improvement in MAP. These
demonstrate the great effectiveness of the speaker normalization for
unsupervised spoken term detection. It is also noted that VTLN per-
forms consistently better than CMLLR in our experiments. This is
probably because they are applied on a per utterance basis, and sev-
eral test utterances are not long enough for reliable CMLLR trans-
form estimation.

Table 2. Performances of ASM Tokenizers
Tokenizers P@N P@10 MAP

DIP

ASM 0.403 0.556 0.390
ASM VTLN 0.458 0.662 0.479

ASM CMLLR 0.424 0.612 0.425

DCos

ASM 0.402 0.556 0.392
ASM VTLN 0.451 0.658 0.481

ASM CMLLR 0.425 0.596 0.424

DBhatt

ASM 0.406 0.566 0.404
ASM VTLN 0.474 0.666 0.492

ASM CMLLR 0.442 0.624 0.448

The detection performance is further examined as a function of
the number of query examples and the results are shown in Figure
2. As can be seen, increasing query examples improves the perfor-
mance consistently, but when the number of query examples goes
beyond 6, the improvement becomes less significant. Figure 2 also
shows the performances of the combination of the ASM tokenizer
and the Hungarian phoneme recognizer. The combination is done
by linear score fusion with equal weights. It is promising that the
combination leads to a MAP of 0.591, which is a 9.9% absolute im-
provement to the performance of ASM with VTLN normalization.
This indicates the complementariness between the unsupervised to-
kenizer and the langauge-mismatched supervised tokenizer for STD.
It is observed that the combination of the ASM tokenizer and the En-
glish phoneme recognizer also leads to an obvious improvement on
the performance of the English phoneme recognizer.
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Fig. 2. STD performances with different numbers of query exam-
ples. DBhatt is used as the DTW local distance metric.

5. CONCLUSIONS AND FUTURE WORK

This paper investigates the use of an ASM tokenizer in the frame-
work of posteriorgram-based template matching for QbyE STD
task, and evaluates its performance compared to a GMM tokenizer
and two phoneme recognizers. It is shown that the ASM tokenizer
outperforms the language-mismatched phoneme recognizer and the
GMM tokenizer. The performance is further improved by applying
speaker normalization techniques. The ASM tokenizer can provide
a further performance improvement when it is combined with the
two phoneme recognizers. Future work includes: 1) designing more
sophisticated clustering techniques for ASM training; 2) a complete
and task-oriented theoretical analysis on the ASM tokenizer.

6. ACKNOWLEDGEMENT

This research is partially supported by the General Research Fund
(Ref: CUHK 414010) from the Hong Kong Research Grants Coun-
cil.

7. REFERENCES

[1] W. Shen, C.M. White, and T.J. Hazen, “A comparison of query-by-
example methods for spoken term detection,” Proc. INTERSPEECH,
pp. 2143–2146, 2009.

[2] C. Chelba, T.J. Hazen, and M. Saraçlar, “Retrieval and browsing of
spoken content,” IEEE Signal Processing Magazine, vol. 25, no. 3, pp.
39–49, 2008.

[3] T.J. Hazen, W. Shen, and C. White, “Query-by-example spoken term
detection using phonetic posteriorgram templates,” Proc. ASRU, pp.
421–426, 2009.

[4] Y. Zhang and J.R. Glass, “Unsupervised spoken keyword spotting via
segmental DTW on Gaussian posteriorgrams,” Proc. ASRU, pp. 398–
403, 2009.

[5] H. Li, B. Ma, and C.H. Lee, “A vector space modeling approach to
spoken language identification,” IEEE Trans. ASLP, vol. 15, no. 1, pp.
271–284, 2007.

[6] M. Ostendorf, V.V. Digalakis, and O.A. Kimball, “From HMM’s to seg-
ment models: A unified view of stochastic modeling for speech recog-
nition,” IEEE Trans. SAP, vol. 4, no. 5, pp. 360–378, 1996.

[7] C. Chan and L. Lee, “Unsupervised hidden markov modeling of spoken
queries for spoken term detection without speech recognition,” Proc.
INTERSPEECH, pp. 2141–2144, 2011.

[8] M. Huijbregts, M. McLaren, and D.V. Leeuwen, “Unsupervised acous-
tic sub-word unit detection for query-by-example spoken term detec-
tion,” Proc. ICASSP, pp. 4436–4439, 2011.

[9] G. Aradilla, J. Vepa, and H. Bourlard, “Using posterior-based features
in template matching for speech recognition,” Proc. INTERSPEECH,
pp. 1186–1189, 2006.

[10] Y. Qiao, N. Shimomura, and N. Minematsu, “Unsupervised optimal
phoneme segmentation: objectives, algorithm and comparisons,” Proc.
ICASSP, pp. 3989–3992, 2008.

[11] C.H. Lee, F.K. Soong, and B.H. Juang, “A segment model based ap-
proach to speech recognition,” Proc. ICASSP, pp. 501–541, 1988.

[12] D.A. Reynolds and R.C. Rose, “Robust text-independent speaker iden-
tification using Gaussian mixture speaker models,” IEEE Trans. SAP,
vol. 3, no. 1, pp. 72–83, 1995.

[13] P.A. Torres-Carrasquillo, D.A. Reynolds, and JR Deller Jr, “Language
identification using Gaussian mixture model tokenization,” Proc. IC-
SLP, pp. 757–760, 2002.

[14] M.J.F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12,
pp. 75–98, 1998.

[15] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical structures of
neural networks for phoneme recognition,” Proc. ICASSP, pp. 325–
328, 2006.

5160


