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ABSTRACT

When applied to speech, Non-negative Matrix Factoriza-
tion is capable of learning a small vocabulary of words, fore-
going any prior linguistic knowledge. This makes it adequate
for small-scale speech applications where flexibility is of the
utmost importance, e.g. assistive technology for the speech
impaired. However, its performance depends on the way its
inputs are represented. We propose the use of exemplar-based
sparse representations of speech, and explore the influence of
some of these representation’s basic parameters, such as the
total number of exemplars considered and the sparseness im-
posed on them. We show that the resulting learning perfor-
mance compares favorably with those of previously proposed
approaches. Index Terms— Vocabulary Acquisition, Non-

negative Matrix Factorization, Sparseness, Lasso, Exemplars

1. INTRODUCTION

As technology more and more finds its way into our daily
lifes, in the form of handheld devices, GPS, home automa-
tion, etc., there is an ever increasing need to interface with
it in an easy and natural way. Speech processing can play a
central role in meeting these demands, if it can be made accu-
rate and flexible enough to suit any user’s needs. And it’s the
flexibility that is at present in some contexts insufficient. To
recognize words, an Automatic Speech Recognition (ASR)
system must have a model for each. In the most straightfor-
ward case, these models are defined in advance, describing
their ‘standard’ acoustic realizations. Such generic models
do not cover for all the possible alterations that may occur in
word pronunciations.

There are specialized algorithms that can adapt the mod-
els in terms of speaker-related parameters such as age, gender,
dialect, speaking rate, etc., e.g. [1], but these algorithms have
their limits. Their adaptation can only alter low-level local-
ized acoustic descriptions of the words, but not their phone-
mic identity: anything beyond variations to the standard pro-
nunciation falls outside the scope of such techniques.

Because of this, speech recognition is for instance largely
inaccessible for users with severely reduced speech capabil-
ities. This is especially unfortunate for those whose speech
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pathology results from an illness that also affects the func-
tion of their upper limbs, limiting them in their use of clas-
sical human-machine interfaces, such as buttons and slides.
Given their dependence on assistive technology, it is exactly
this group of users that could benefit the most from voice in-
terfaces.

There is thus need for a recognition system that automat-
ically learns to recognize uttered words, without making any
prior assumptions about their phonemic structure and their
acoustic properties. Although this is not feasible for very
large vocabularies, such a system can be very helpful, since a
small vocabulary is already sufficient for many applications.
The difficulty in such a system is to learn words when they are
embedded in a sentence. Moreover, in the case of commands,
not only the acoustics have to be learned, but also their phys-
ical significance.

The learning framework used in [2], which is based on
Non-negative Matrix Factorization (NMF), is capable of do-
ing all these things. A central question that presents itself,
however, is how to represent the inputs of this method. In
[2], Van hamme proposes the Histogram of Acoustic Co-
occurrences (HAC), a method that essentially clusters and la-
bels temporally localized parts of the signal, and accumulates
the occurrences of label combinations at a certain time offset
into a histogram. There are disadvantages to this method,
however, that make it less tractable. For instance, since it is
based on clustering and classifying very short segments of
speech, typically no more than 10ms, without considering
any temporal context, much of the variability in the speech
signal is left for the NMF algorithm to deal with. Also, in-
formation is lost in the quantization of the continuous-valued
speech segments. Last but not least, the HAC-representation
contains a feature for all possible label combinations, giving
them a tendency to be of a very high dimensionality.

In this paper, we propose to replace the histogram-based
HAC representation by a sparse vector of coefficients which
describe the input signal as a linear combination of speech
exemplars, i.e. selected segments of real speech. Concep-
tually, the use of exemplars offers several advantages: since
the exemplars have a longer duration, these representations
are more robust against temporally fine-grained variations in
speech. Also, since time information is already encoded in
these coefficients, there is no need to consider combinations
of them, limiting the dimensionality of the resulting vector
representations. Finally, it has been shown previously that the
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use of exemplars offers convenient ways of dealing with noise
[3].

Applying this idea on a keyword learning task, we explore
the influence of some of its parameters, such as the number of
exemplars, and the sparsity of the linear approximations. We
make a comparison of the resulting learning performance with
that of HAC. This paper is organized as follows: in section 2,
we explain the keyword learning framework. In section 3, we
explain the derivation of HAC and the exemplar-based repre-
sentations. Experiments in which both speech representations
are applied to the learning framework are discussed in section
4. We finish with some concluding remarks and future per-
spectives in section 5.

2. KEYWORD DETECTION

NMF is an algorithm that, as its name implies, factorizes a
non-negative M × N matrix V, containing speech data, into
a non-negative M × R matrix with word models, W, and a
non-negative R × N matrix H, containing word activations:
V ≈ W · H. The solution can be found by minimizing a
distance between V and its approximation WH. There is a
variety of distance measures that can be chosen, but in this pa-
per we use the Kullbeck-Leibler divergence1 DKL(V||WH).
The minimization of this divergence can be done iteratively,
using the multiplicative updates presented in [4]. Because R
is usually much lower than either M or N , this leads to a low-
rank approximation of the data. NMF imposes a linear model
on the data, describing each column of V as a weighted ad-
dition of R basic atoms, given by the columns of W, while
storing the weights of these additions in the columns of H.
NMF may thus discover latent structure in the data, if it is
present.

In this work, where we want to apply NMF on speech, we
introduce this structure through the method by which we con-
vert the time signal into a non-negative vector. Concretely, if
we have an utterance Uj , which consists of a sequence of n
words {w1, w2, . . . , wn}, and we name the conversion opera-
tor ψ(·), we demand that

V(:,j) = ψ(Uj) ≈ ψ(w1) + ψ(w2) + . . . + ψ(wn) (1)

in which V(:,j) is the j’th column of the data matrix. Ideally,
NMF should discover the vector representations of all the dif-
ferent words in the data ψ(wk), in which k = 1..n, as the
basic atoms in W. However, even if the data meets the above
condition, this is far from guaranteed. The multiplicative up-
dates by which NMF is solved do not necessarily lead to a
global minimum. They merely minimize the divergence, find-
ing a local optimum that depends on the random initialization
of W and H. Additional supervision is therefore required for
NMF to robustly learn the word representations from speech.
To this end, renaming the data matrix to V1, we append a
matrix V0 to it, which is defined as

V0,ij =

{
1 if Uj contains word wi

0 otherwise

1KL divergence is technically not a distance measure, since it is not sym-
metric

Put differently, it contains a row for each recognizable word,
which indicates that word’s presence in each utterance. An
additional matrix W0 is also appended to W (henceforth
called W1), and is defined as an identity matrix, to link every
keyword to a column in W. If R is larger than the number of
recognizable words, W0 is padded with zero columns. The
NMF factorization thus becomes:

V =

[
V0

V1

]
≈

[
W0

W1

]
H = WH (2)

The weights in H which map W0 onto V0, are the same as
those that map W1 onto V1. Because of the way W0 is
defined, this constitutes supervision, since it promotes solu-
tions in which a single word ψ(wk) is assigned to each of the
columns in W1. To ensure a sufficient influence of this su-
pervision on the factorization of NMF, V0 is scaled with a
constant factor such that the sum of its elements equals that
of V1. One can regard this supervision as the addition of a
regularization term to the cost function, penalizing deviations
of H from its known optimal value:

(W∗,H∗) = min
(W,H)

(DKL(V1||W1H) + DKL(V0||W0H))

Applying NMF to a set of training data [Vtrn
0

T
Vtrn

1

T
]T

with this supervision thus leads to word models in W. Given
a set of test data Vtst

1 , in which the corresponding meta-
information Vtst

0 is evidently not known, these models
can be used to calculate the matrix Htst, for which holds
Vtst

1 ≈ W1H
tst. The product of W0 with Htst is a la-

belling matrix A, that predicts the unobserved data Vtst
0 .

The framework is depicted in figure 1.

Fig. 1. A schematic overview of the learning framework.

3. REPRESENTATIONS OF SPEECH

The non-negative vectors V(:,j) have to be representative for
the original signal, and have to meet the condition put for-
ward in (1). In a first step, the signal is framed, using time
windows of 25ms, shifted in increments of 10ms. In each of
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these frames, 22 MEL-coefficients, along with their first and
second order differences are determined. The resulting 66-
dimensional space containing these vectors is then reduced to
36 dimensions with MIDA (Mutual Information Discriminant
Analysis), an enhanced variant of Linear Discriminant Anal-
ysis based on mutual information. For details, see [5].

3.1. Histogram of Acoustic Co-occurrences

To determine the Histogram of Acoustic Co-occurrences
(HAC), all the frames in a large set of data are first clustered
into C classes, using a standard algorithm like K-means clus-
tering, e.g. [6]. Using the resulting set of cluster centers as a
Vector Quantization (VQ) codebook, the frames in each input
utterance are converted into a sequence of VQ-labels. One
way to meet condition (1) is to construct a histogram, count-
ing the number of times each label occurs in the utterance.
However, all but the most fine-grained temporal structure of
the utterance is lost in this operation. To preserve some of this
information, it is better to count the number of occurrences
of label combinations at a certain time offset τ . An example
is given in figure 2 where label co-occurrences at an offset of
30ms (3 frames of 10ms) are shown. Histograms resulting
from multiple values of τ can be concatenated, capturing even
more time information in the final HAC-vector. This comes
at a cost, however, since each additional value for τ raises the
dimensionality by C2.

Fig. 2. An example in which co-occurrences of symbols are
derived with a time offset τ of 3 frames

3.2. Exemplar-based Activations

As an alternative to HAC, we propose a method which uses
the same spectro-temporal input as before, but operates on a
broader time scale. P windows of T consecutive frames are
taken from a large set of training utterances, stacked into vec-
tors of length T · D for which holds TD � P , and placed
as columns in a matrix X. Here, D is the dimensionality of
the MIDA features, in our case equal to 36. Each speech seg-
ment of T frames, taken from an utterance Uj at time t, is
then stacked the same way, resulting in a vector yt,j which is
approximated by a linear weighted addition of the exemplars:

yt,j ≈ α
(1)
t,j X(:,1) + α

(2)
t,j X(:,2) + . . . + α

(P )
t,j X(:,P) = Xαt,j

(3)
As ||yt,j − Xαt,j ||

2
2 is minimized, a sparseness constraint is

imposed on α. To determine equation (3) in this paper, we
have made use of LASSO (Least Absolute Shrinkage and Se-
lection Operator), an off-the-shelf algorithm that allows strict
control over the resulting sparsities by limiting the number of
iterations, [7].

A sliding window of 10 frames is shifted over the signal in
increments of 1 frame, and in each position an activation vec-
tor αt is calculated, with a pre-selected number of non-zero
elements S. The vector representation of the speech signal is
then created by summing these sparse activation vectors over
time.

V(:,j) =
∑

t

αt,j (4)

4. EXPERIMENTS

Both vector representations were created for real speech data.
The database was recorded for the ACORNS project (Ac-
quisition of Communication and RecogNition Skills), and is
specifically designed to benchmark keyword learning tech-
niques [8]. It consists of 13160 short, syntactically simple
utterances, produced by 10 different unimpaired speakers.
There are 50 different keywords, 1 to 4 of which occur in
every utterance. These keywords are always embedded in
a carrier sentence with unrelated terms. A training set is
defined, containing 9821 randomly selected utterances. The
testing set consists of the remaining 3272. The utterances
of both train and testing set are vectorized. HAC is applied,
as explained in section 3.1, with VQ codebook sizes ranging
from 100 to 500. Time offset values τ of 20ms, 50ms and
90ms are combined, as was done in [9]. The sparse activation
vectors from section 3.2 are derived using randomly selected
sets of 1000, 5000 and 10000 exemplars to explore to what
extent higher numbers of exemplars improve recognition ac-
curacy. The sparsity of the activations is varied between 4
and 40, because in related exemplar-based work it has been
shown that increasing the sparsity may improve recognition
accuracy, even though this can lead to higher reconstruction
errors (cf. [10]). The average reconstruction error in a single
utterance is shown as an example in figure 3.

The learning framework from section 2 is then applied on
all the data matrices. The number of columns in W, R is cho-
sen higher than the number of keywords at 75, assigning 25
columns to model inputs unrelated to keywords, as is recom-
mended in [2]. Evaluation of the keyword prediction on each
testing set is done as follows: if test utterance j contains Kj

keywords, they are compared with the Kj largest elements
in the corresponding column of the prediction matrix, A(:,j).
Each substitution encountered is counted as an error; Inser-
tions and deletions are not possible in this comparison. The
total error rate is:

ER = 100 ·

∑3272
j=1 #substitutions∑3272

j=1 Kj

% (5)

Although in a real application the number of keywords Kj

may be unknown, this measure does allow a comparison be-
tween different kinds of input. To remove the element of ran-
domness in the experimental results, caused by the initializa-
tion of W and H in NMF, each experiment was repeated 5
times and the results were averaged. The results are shown in
table 1.

As can be observed in this table, there is clearly an op-
timal sparsity for the exemplar-based inputs in this learning
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Fig. 3. Reconstruction errors, averaged over 20 sparse rep-
resentations, for different numbers of exemplars and different
sparsities, using increasing numbers of exemplars.

task. At the same time, the average reconstruction error dis-
played in figure 3 does decrease as the number of non-zero
elements increases. This matches the findings in [10] where
it was shown that word identities are to a degree encoded in
the α-vectors, which is lost if the sparsity becomes too low or
too high. The use of more exemplars is also found to have a
positive influence on the error rates, with the best results ob-
tained with 10000 exemplars with 12 nonzero elements, re-
sulting in a 2.50% ER. This yields a comparable performance
as HAC features using a 400 dimensional codebook, which
yields 2.49% ER.

For the HAC features, higher dimensional codebooks
do not increase the performance, whereas for the exemplar-
based representation it is likely larger numbers of exemplars
can further reduce the error rates. It should also be noted there
is a large disparity between the dimensionalities of their word
models, i.e. 10000 and 480000 (3 · 4002) for exemplar-based
and HAC features, respectively. These findings, together with
the possibility of noise robustness outlined in [3], make the
use of exemplar-based sparse representations a promising
candidate for keyword learning in realistic settings.

5. CONCLUSION

In this work we proposed an exemplar-based sparse represen-
tation of speech as the basis for weakly supervised keyword
learning. It was shown that the best results are obtained by im-
posing a stronger sparsity than the one leading to the optimal
reconstruction error of the sparse representation, and that the
more exemplars are used, the better the results. Furthermore,
it was found that the proposed approach compares favourably
to the histogram-based features used in earlier work.

Future work will include exploring to what extent even
larger numbers of exemplars can further improve the perfor-
mance, investigate the use of different approaches to obtain a
sparse representation and investigate the noise robustness of

Exemplars HAC
�

�
�

�
�

�
�

�= 0
P

1000 5000 10000 C

4 6.73 4.13 4.01 100 4.59
8 6.87 3.25 2.87 150 3.61
12 7.52 3.24 2.50 200 3.02
16 8.34 3.49 2.60 250 2.63
20 9.17 3.75 2.64 300 2.53
24 10.53 3.99 3.03 350 2.59
28 11.30 4.39 3.04 400 2.49
32 12.47 4.54 3.51 450 2.56
36 13.57 4.88 3.66 500 2.62
40 14.86 5.07 3.82

Table 1. The resulting unordered error rates, expressed in %.
The best result for each experiment is printed in bold.

both exemplar-based and histogram-based representations.
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