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Abstract
A speech recognition system that automatically learns word
models for a small vocabulary from examples of its usage, with-
out using prior linguistic information, can be of great use in
cognitive robotics, human-machine interfaces, and assistive de-
vices. In the latter case, the user’s speech capabilities may also
be affected. In this paper, we consider a NMF-based learning
framework capable of doing this, and experimentally show that
its learning rate crucially depends on how the speech data is rep-
resented. Higher-level units of speech, which hide some of the
complex variability of the acoustics, are found to yield faster
learning rates.
Index Terms: Acoustic Sub-Word Generation, Unsupervised
Learning, Vocabulary Acquisition, Machine Learning

1. Introduction
One of the main practical applications of speech recognition
technology is in spoken human-machine interaction. For the
average consumer this is especially relevant for devices with
complex functionality or a very small form factor, or in hands-
busy situations. For people with motor impairment (especially
of the upper limbs), on the other hand, such technology is also
useful in voice-controlled assistive devices, even if their lim-
ited complexity requires only a small vocabulary. The diffi-
culty with this is that motor impairments often co-occur with
voice pathologies, causing a great deal of speaker variation, to
the extent that speaker-independent models become unusable,
e.g. [1, 2]. A system designed to recognize commands and act
upon them must therefore learn and adapt to the specific speech
patterns of any individual user. Standard automatic speech rec-
ognizers rely heavily on pre-programmed knowledge, making
them less suitable in this context. There is need of a recognition
system that can learn voice commands automatically, without
using any prior linguistic knowledge and with only a minimal
amount of supervision. The setting here differs from training
of traditional speaker dependent hidden Markov models in that
the user interface is required to learn from examples of its us-
age, i.e. it should acquire a vocabulary with associated meaning
(actions). For example, in home automation where a user con-
trols light, radio or TV with buttons on a remote control, the
aim is to learn voice commands (as chosen by the user) and as-
sociate them with their related button presses. The setting is
reminiscent of socially guided machine learning [3]. It also re-
lates to how language learning infants create a mapping between
acoustic patterns and objects in their surrounding environment,
an operation called ‘grounding’, e.g. [4, 5].
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In this paper, we make use of the vocabulary acquisition
framework proposed in [6]. This framework is centered around
Non-Negative Matrix Factorization (NMF) [7], and is able to
learn a relatively small vocabulary of keywords from a set of
speech data. The strength of this technique is that it can learn
words embedded in utterances without the need of a segmenta-
tion, requiring no more supervision than the identity of the em-
bedded keyword. We elaborate further on this below, in section
3. Making use of this framework, we focus on its capabilities
to handle previously unseen words. More precisely, we want to
know after how many training instances these new words can
reliably be detected in a set of unseen test utterances. Intu-
itively, one can see that this largely depends on the represen-
tation of speech on which the learning framework operates. To
investigate this, we make an analysis of the framework’s perfor-
mance using two different kinds of input. On the one hand, the
method based on vector quantization of short speech segments,
which was proposed in [6]. On the other hand, Unsupervised
Acoustic Subword Units (ASWU’s), derived in a way that is
loosely based on the work in [8] and [9]. We explore the influ-
ence of these input representations’ complexity, i.e. the number
of different units they contain, on the learning rate of the NMF
framework. Moreover, in the case of ASWU’s, we investigate
the influence of the temporal granularity of these units, i.e. their
minimum duration.

This paper is organized as follows: in section 2.1, we dis-
cuss the unsupervized derivation of low- and high-level repre-
sentations of speech. In section 3 we briefly review the NMF-
based framework used for vocabulary acquisition. Finally, in
section 4, we determine experimentally how quickly the frame-
work learns a previously unseen keyword. We finish with some
concluding remarks in section 5.

2. Representations of Speech Data
The input of our experiments consists of 13089 short English
utterances (3 to 4 seconds) from a database recorded with the
specific purpose of benchmarking keyword learning algorithms
[10]. 9821 of these utterances are randomly selected to make
up the train set, the 3268 remaining ones make up the test set.
These utterances are spoken by 10 different speakers. Each ut-
terance contains up to 4 keywords chosen from a total vocabu-
lary of 50. In the front-end, 25ms frames with a frame shift of
10ms are considered, in which 22 MEL-scaled filterbank coef-
ficients are computed. Their first and second order differences
are added, yielding 66 coefficients per frame. This number is
then reduced to 36 by MIDA, a mutual information based vari-
ant of LDA [11]. To enable vocabulary learning with NMF on
this data, each utterance is converted to a single non-negative
descriptive vector, approximately containing a weighted addi-
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Figure 1: The HMM lay-out which we use to train the 200 Gaus-
sian mixture models.

tion of vectors that describe words. A representation that fits
these conditions is a histogram of acoustic events, accumulated
over the utterance’s duration. Differences between representa-
tions lie in the way these acoustic events are modelled.

2.1. Acoustic Sub-Word Units

One of the basic precepts in this work is that prior linguistic
information must not be used. Phones, along with their associ-
ated acoustic models are therefore excluded as a basis for NMF
learning. In this method, we wish to define units that are con-
ceptually similar to phones, but are derived in a data-driven way,
without supervision. To this end, we first define an ergodically
connected HMM as shown in figure 1. Each sub-word unit in
this HMM is modelled as a sequence of states, sharing a single
emission distribution. Only the last of these states is allowed
to loop back to itself. As such, this topology imposes a lower
limit on the duration of units in Viterbi alignment of observed
utterances.

To model the emission distributions of the units, we have
opted in this paper for Gaussian mixture models (GMMs), since
this is the way continuous density distributions are usually mod-
elled in ASR applications. At initialization time, these GMMs
are defined with only a single mixture component, namely the
Gaussians fitted over clusters of input data, determined by the
Kmeans algorithm. These Gaussians are then iteratively split
and re-estimated on the training data, along with their mixture
weights, by means of Viterbi training. In the experiments be-
low, state transition probabilities are not trained. They are set
and kept at constant values. Most noteworthy of these constants
are the loop probability on the last state of each unit, and the
cross-unit transition penalties. Together these parameters play a
part in the average time span of the units in a segmentation. In
the experiments below, the loop probability is set to 0.95.

To ensure the discovered units are general enough to cover
speech from all 10 speakers in the database equally, we follow
the scheme that is shown in figure 2. Using data from each of
the 10 speakers, 200 speaker-dependent acoustic sub-word units
are initialized and trained, leading to a total of 2000 units, each
with its own mixture model. Hierarchical clustering of these
models allows us to tie them together across speakers into a total
of K speaker independent models, i.e. sub-word units. In this
paper, we create two distinct sets of such units, one containing
500 of them, the other 74. The latter value is found to be the
lowest possible number of models general enough to represent
acoustic units, without modelling speaker characteristics.

For all the utterances of train and test set, the acoustic mod-

Figure 2: An overview of the steps to obtain posteriorgrams:
speaker dependent clustering in the first step, then training of
GMM’s based on the resulting clusters, followed by grouping
the resulting GMM’s across speakers and retraining them. Fi-
nally the resulting models are applied to generate posterior-
grams.

els and HMM topologies are used to create a directed acyclic
graph, in which each arc represents a sub-word unit. From the
likelihoods of the arcs in these lattices, we calculate p(uk|ot),
i.e. the posterior probabilities of of the units uk, k = 1...K,
given the frames of the observed input ot, t = 1...T . The re-
sulting matrix with dimensionality K × T is called the posteri-
orgram. The smoothing effect of imposing a minimum number
of states per unit can be keenly observed in this representation,
as is shown in figure 3.
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Figure 3: Posteriorgrams of an utterance. The acoustic models
here define 74 different units. The minimum length of these units
is respectively 1 state (above) and 4 states (below).

From these posteriorgrams, joint probabilities of the sub-
word units at a time offset τ are calculated by multiplying their
posteriors. We make an inherent assumption by doing this,
namely

p(lt = ui, lt+τ = uj) = p(lt = ui) · p(lt+τ = uj)

where lt denotes the unit label assigned to frame t. For each
utterance, these joint probabilities are accumulated into a vec-
tor of length K2, where K is the number of subword units in
the model, either 74 or 500. Vectors derived in this way con-
tain many values close to zero, but are not sparse, making them
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computationally less tractable for processing with NMF, see be-
low. In order to introduce sparsity, all but the 3 highest posterior
probabilities in each frame are set to 0, and the remaining ones
are normalized to 1. Determining joint probabilities in this way
is better than merely accumulating posteriors, since some of the
utterance’s temporal information is preserved in this operation.
This idea can be taken even further by considering multiple val-
ues of τ , thereby however multiplying the dimensionality of the
resulting feature vectors. In our experiments, we consider time
offsets τ equal to 20ms, 50ms and 90ms, yielding for every vec-
tor in train and test set a sparse vector of total length 3K2.

2.2. Vector Quantization Labels

In this method, an equal number of speech frames for every
speaker is selected from the train set, yielding in total 53550
data vectors. The K-means clustering algorithm is performed to
separate this data into K clusters (for comparison’s sake again
either 74 or 500), the centroids of which comprise a vector
quantization codebook. Each frame of the utterances in both
train and test set can then be described by a single VQ-label
between 1 and K. Based on a hard clustering of very short
segments, without considering temporal context, they capture
many fine-grained variations in the speech signal, rendering the
discovery of word-related patterns more difficult.

In order for such label sequences to be used in NMF, we
will then convert them into histograms. For the same reasons
as mentioned above, in section 2.1, we do not accumulate label
occurrences in these histograms, but the occurrences of label
combinations at a certain time offset τ . This yields sparse vec-
tors of length K2. This is in fact the same operation as the
accumulation of joint probabilities from the previous section, if
the label sequence is considered as a posteriorgram with a sin-
gle non-zero value per column. In our experiments, we take
once more the values of τ : 20ms, 50ms and 90ms, leading to
representations of length 3K2.

3. Vocabulary Acquisition
3.1. Non-Negative Matrix Factorization

For the vocabulary acquisition we make use of NMF, a
paradigm in which a typically large non-negative matrix V of
dimensionality M × N is approximated as the rank-reducing
product of non-negative matrices W and H which are of respec-
tive sizes M × R and R × N . This factorization is solved by
initializing W and H randomly and minimizing the cost func-
tion:

D(V ||WH) =
X
ij

Vij log
Vij

(WH)ij

− Vij + (WH)ij (1)

This can be done with iterative multiplicative updates (see [7]).
Since R is small compared to both M and N , the columns

of W will contain patterns that approximately can be recom-
bined by weighted additions to form the N columns of V , with
the columns of H containing the appropriate weights to accom-
plish this. In our learning framework, where every column of V

is a vector that represents a speech utterance as described in pre-
vious section, the aim is for the columns of W to be represen-
tations of word-like speech patterns. There are 50 keywords in
the data, so R should be at least equal to 50. In our experiments,
R is set at 75. The extra columns model acoustics that are un-
related to any of the keywords, e.g. the carrier words, noise,
etc. These columns will henceforth be referred to as ‘garbage

columns’. In order to learn the keywords from the train set and
to detect them in the test set, we apply NMF as proposed in [6].
Vtrain is augmented with a grounding part G which indicates
the presence of keywords in each utterance as follows:

Gij =

j
1 if utterance j contains keyword i

0 otherwise

NMF training then becomes
»

G

Vtrain

–
≈

»
Wg

W

–
· Htrain (2)

Assigning keyword i to a column of W is then done by making
the appropriate value in the corresponding column of Wg large
compared to all the others. As such, the 50 keyword-related
columns in Wg will resemble an identity matrix (or a permuta-
tion thereof) with very small off-diagonal values. The garbage
columns in Wg contain only very small values. Since Vtrain

contains data from all speakers, the models in the columns of
W are speaker independent.

Detection of keywords on the test set (for which the pres-
ence of keywords is unknown) is done by finding Htest based
on the acoustics of the test set and the trained W -matrix:

Vtest ≈ W · Htest (3)

Multiplying Htest with Wg yields an activation matrix A

A = Wg · Htest (4)

which is an estimate of the unknown grounding matrix of the
test set, Gtest. The presence of the Pj keywords in utterance j

of the test set is predicted by identifying the Pj largest elements
in the corresponding column of A. The unordered error rate
(UER) that results is defined as

UER = 100

P
j
SjP

j
Pj

(5)

where Sj is the number of substitutions made in this prediction.
The multiplicative updates in [7], used for solving NMF, only
converge towards a local optimum, not a global one. Due to the
random initialization of W and H , the resulting factorization
of NMF is therefore not deterministic. For this reason, these
experiments are typically run several times, and the results are
averaged over the different attempts.

4. Word Learning Rate
In the experiment of previous section all keywords are learned
at the same time. The goal of this paper, however, is to assess
the ability of this learning framework to acquire new, previously
unseen words, when a vocabulary of old words is already estab-
lished. To this end, the following experiment is set up. 10 of the
50 keywords in the database are selected to act as new words,
after which the train data is divided into two subsets: on the one
hand V

(1)
train, consisting of the utterances which contain any of

these new keywords (4495 utterances in total), on the other hand
V

(2)
train containing the remaining utterances. From the latter, the

40 ‘old’ keywords are first learned as described in section 3.
Like before, all columns of W are still assigned a single one of
these keywords, and the number of garbage columns is still set
at 25. Hence, R in this training run is equal to 65.

In a next step, W and Wg are expanded to accommodate the
10 new keywords, and the NMF training is continued on V

(1)
train,
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i.e. the data that contains these new words. Evaluation is done
using equations 3 and 4 on all the utterances of the test set.
Since this experiment mainly focuses on the 10 new keywords,
we will only consider substitutions of these keywords as errors
in the evaluation of the learning algorithm.

To determine how quickly new word representations are ac-
quired, learning of the new keywords is performed on increas-
ing random subsets of V

(1)
train. The larger the number of training

examples, the more accurate the predictions are expected to be.
As stated above, each experimental outcome is subject to a de-
gree of randomness, which is why they are repeated four times,
and their results averaged. These results are shown in figure 4.
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Figure 4: The learning rate for the unseen words for increas-
ing train sets, expressed in number of errors using the optimal
detection threshold.

We can see that the number of distinct units, as well as the
way they are modelled, have a profound effect on both the learn-
ing rate and the accuracy at which the learning saturates. A
higher number of units always leads to better results, regardless
of what these units are. This is expected, since more units al-
low for more accurate word models. Sub-word units of 1 state
are conceptually very similar to soft VQ, i.e. a representation
in which each frame is not described a single cluster label, but
with probabilistic weights for all clusters [12]. When the num-
ber of units is 74, this leads to very similar error rates, although
VQ-labels are a bit quicker to learn, likely because the few
realizations of each word within a small set of training utter-
ances there show less variation. The reverse is true for 500 unit
models. Since the 500 corresponding data clusters are smaller,
slight acoustic differences lead more easily to different labels.
Variation in the speech signal is thus much more reflected in
the VQ-labels, causing learning to go exceptionally slow. This
is to a much lesser extent the case for GMM’s, because their
complexity allows them to model such slight variations into the
same sub-word unit. This way, small variations are hidden from
the NMF learning framework. The same effect is perceived in
comparing the 74 unit models constrained to a duration of a
single frame, with those constrained to 4 frames. Fine-grained
variations are here too prevented from showing up in the label
sequence because of this longer minimum duration. Imposing
such a longer minimum duration in a model of 500 units harms
performance, when compared to unconstrained units, likely be-
cause the former is able to model stationary parts of the signal
that are shorter than 40ms, whereas the latter is not.

It has been shown in the past that NMF can very conve-
niently combine knowledge sources [13]. With this idea in

mind, an experiment was set up in which we combine the data
representation enabling the fastest learning (74 units - 4 states)
with the one enabling the lowest UER. The result, shown as a
dashed curve in figure 4, shows that this hybrid data representa-
tion has the advantages of both, facilitating fast learning as well
as high accuracies.

5. Conclusion
In this paper, we have discussed several means of represent-
ing a speech utterance as input data to a NMF-based learning
framework for vocabulary acquisition. These input types in-
clude very low-level representations of the acoustics, as well
as higher-level representations called acoustic subword units,
similar to phones. We investigated the influence of the type of
input on the speed with which new words are acquired by the
learning framework. During the learning process, no use was
made of prior linguistic knowledge and supervision was kept to
a minimum. This enables e.g. the learning of voice commands
from speech that is strongly affected by various kinds of voice
impairments. The number of training examples necessary for
word learning is of great importance in such applications. We
have shown experimentally that learning is most quickly per-
formed with higher-level data representations, and that doesn’t
necessarily come at the cost of reduced performance. Future
work includes evaluation of such representations on larger vo-
cabularies.
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