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ABSTRACT

Automatic emotion recognition from speech is limited by the
ability to discover the relevant predicting features. The com-
mon approach is to extract a very large set of features over a
generally long analysis time window. In this paper we inves-
tigate the applicability of two-sample Kolmogorov-Smirnov
statistical test (KST) to the problem of segmental speech emo-
tion recognition. We train emotion classifiers for each speech
segment within an utterance. The segment labels are then
combined to predict the dominant emotion label. Our find-
ings show that KST can be successfully used to extract statis-
tically relevant features. KST criterion is used to optimize the
parameters of the statistical segmental analysis, namely the
window segment size and shift. We carry out seven binary
class emotion classification experiments on the Emo-DB and
evaluate the impact of the segmental analysis and emotion-
specific feature selection.

Index Terms— feature selection, emotion recognition,
Kolmogorov-Smirnov statistics

1. INTRODUCTION
Current automated systems for emotion recognition from
speech have shown a significant progress for instances of
clearly manifested acted prototypical basic emotions (e.g.
anger, joy) [1, 2]. Alternatively to categorical labeling, the
emotional state may be characterized in terms of several
real-valued parameters (typically arousal and valence) [1].
As these systems are based on statistically-estimated fea-
tures, a sufficient evidence (∼ 2 seconds of speech) has to be
collected for reliable operation. However, these systems per-
form much worse in the recognition of real-life spontaneous
emotional manifestations.

In the case of real-life spontaneous spoken interaction,
the instantaneous affective state of interlocutors “is a mix-
ture of emotion, attitude, mood, interpersonal stance, often
in response to multi-trigger events (both internal and exter-
nal) occurring at different times” [3]. While being more lo-
calized in time compared to the whole utterance, these cues
are being injected into speech each at a certain time instance
to produce a dominant affected utterance. The conversational
context is important for the process of meaning attribution

(grounding) of the observed interactive cues [4] and the attri-
bution of a particular hypothesized affective state. For affect
recognition technology to become more robust in real tasks a
more sophisticated detection system has to be employed. One
which is capable of detection individual affective cues within
smaller analysis intervals and proper contextualized cue inter-
pretation.

The approach of emotion recognition from sub-intervals
was tried in [5] and it has proven to be advantageous in
combination with the traditional large-analysis span feature
vector computation. However, a systematic way to select
the optimal sub-interval split was not given. Besides, the
sub-intervals were strictly non-overlapping. Detection of the
emotion-specific phoneme-conditioned cues was explored in
[6] and proved to be informative for predicting the emotional
label for the whole utterance. However, only low-level spec-
tral features (MFCCs) were evaluated. A recent paper [7] has
explored a larger sliding analysis window of 1 sec. The stan-
dard feature vector of Interspeech’2009 Emotional Speech
Challenge [8] was universally used. An improvement in com-
parison to a baseline (computing a unique feature vector from
the whole utterance) was recorded. The improvement was
varying with a particular choice of heuristics for the global
emotional label generation. A problem of feature selection
was addressed in [9]. However the approach adopted there
was an exhaustive search for the best feature combination
while retraining SVM classifier on the whole database.

In this paper we explore the predictive power of the two-
sample Kolmogorov-Smirnov statistical test on the individual
features towards selection of the optimal width and shift of
the statistical analysis interval, as well as the set of features
for given optimal width and shift. Recently the two-sample
KST has been found useful in comparative feature evaluation
for emotion recognition [10]. However there are no reports
on KST–based feature selection.

2. KOLMOGOROV-SMIRNOV STATISTICAL TEST
FOR FEATURE SELECTION

It is possible to use a two-sample KST to assess the similar-
ity of empirically defined distributions of random variables.
KST aims at rejecting (at the specified level of significance

5125978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



p) the null-hypothesis H0 that two random variables have
identical distributions. Essentially for a given pair of ran-
dom variables X and Y the Kolmogorov-Smirnov statistics
DX,Y is the largest observed discrepancy between the esti-
mated cumulative distributions through-out the sample space
(i.e. ∀z ∈ (−∞,∞)):

DX,Y = sup
∀z∈(−∞,∞)

|P̂ (X ≤ z) − P̂ (Y ≤ z)|. (1)

Here “sup” refers to a supremum operation, i.e. a choice of
the largest operand value. The associated significance p is
obtained as a probability to see an observed value of DX,Y

under H0 while drawing the random samples of X and Y .
The usefulness of KST in application to feature selection

comes from the absence of the explicit analytical assumption
on the form of the distributions of X and Y . Given a classical
binary classification task one might search for features which
individually violate H0 at a significance level p when samples
are coming from the binary classes (C = 0 and C = 1).

In the uni-variate case, when

P (X ≤ z) = 1 − P (X > z) (2)

and, thus, according to (1), DX,Y is invariant in respect to
orientation of the sample space, i.e. whether we traverse it
from −∞ to ∞ or the other way around. Substitution of the
‘≤’ sign with a ‘<’ sign during order inversion is not essential
for the definition of the Kolmogorov-Smirnov statistics.

Unfortunately there is no straightforward generalization
of KST to multivariate analysis. E.g. for the bi-variate case
the following statement holds true

P (X1 ≤ z1, X2 ≤ z2) = 1 − P (X1 > z1, X2 > z2)−

−P (X1 > z1, X2 ≤ z2) − P (X1 ≤ z1, X2 > z2) ,
(3)

which implies that according to (1) the estimates of DX,Y are
no longer required to be equal regardless of the direction of
the sample space traversal.

For a general M -variate case there are 2M−1 independent
ways to re-arrange the sample space and, as a result, obtain
possibly different values for DX,Y and even have different
outcomes of the test. See [11] for a detailed discussion on ex-
isting multi-variate generalizations. Besides, reliable estima-
tion of the multi-variate distribution requires a progressively
larger amount of empirical evidence with the growth of the
sample space dimensionality.

3. CORPORA DESCRIPTION
All experiments described in the present paper were per-
formed with the database of acted German emotional speech
(Emo-DB) [12]. The database contains utterances from 10
native speakers of German. In each utterance the speakers
enact one of ten prototypical emotion state: anger, boredom,
disgust, fear, happiness, neutral, sadness. A subset of the
collected speech containing 494 utterances, which passes the
inter-annotator agreement threshold, is used for experiments.

4. EXPERIMENTS

The baseline feature set used in our experiments, described
in this paper, corresponds to the one suggested in Interspeech
2011 Speaker State Challenge [13]. In total there are 4368
features. The whole set consists of a detailed statistical de-
scription of the basic speech features. According to the ap-
proach adopted in openSMILE [14] the feature extraction is a
two-tier process. First, the basic features are being extracted
within a uniform observation window of 10 msec, then statis-
tics are drawn from a larger statistical analysis window. Vari-
ation of the analysis window width and shift refer to the latter
(statistical analysis) window.

4.1. Kolmogorov-Smirnov test predictions
KST is applied to each individual feature in the collection
with the aim to reject the hypothesis that it is statistically rel-
evant for a target emotion label. For each emotion label we
compute the binary data split where the label is (not) anno-
tated. The hypothesis to reject is that distributions in both
parts of the binary data split are identical (e.g. in samples
pertaining to ‘a class’ as well as the remaining part of the
data, which is tagged as ‘not-a-class’). The property of the
two-sample KST is that both compared distributions are de-
fined empirically and are not required to be represented by the
same number of samples.

There are two major ways to present a joint outcome of
individual feature tests:1) fix the parameter value (e.g. analy-
sis interval, shift, etc.) and see how many features “survive”
a test at a given significance level; 2) plot a histogram across
the parameter value space and put features into the bins, corre-
sponding to the most advantageous parameter value for them.

An example of the first type of analysis is presented in
Fig. 1. In each of the plots there is a family of curves, that
correspond to a different choice of the statistical analysis win-
dow shift and the used significance level. A property of these
curves is that with a proper choice of the combination of shift
and significance level, they tend to overlap, while not being
exactly the same. It is not only the size of the sets being sim-
ilar, the overlap of the sets typically reaches a high level of
∼ 98%. From the practical standpoint this property may find
an application in predicting the outcome of the computation-
ally expensive KST (when shift value is small) by the KST
results with the shift being larger.

An alternative type of analysis would be to plot a his-
togram and answer the question of how many features are the
most relevant at a particular analysis interval. An example of
such plot is given on Fig. 2. Here we take a p-value, associ-
ated with the rejection of H0 in KST trial for each individual
feature, as a measure of that feature reliability. All features,
that do not pass a reliability test at the level of p = 0.05 are
deemed as completely unreliable for a given task. Those are
binned in a separate category. As one can see from the plot,
there is a large share of features, which have the maximum of
their reliability at the shortest analysis interval. From the in-
spection of the selected features we find that simple statistics
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Fig. 1. KST prediction for number of relevant features for a given fixed analysis interval length. Curves are shown for the
‘ANGER’ and ‘HAPPINESS’ labels.
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Fig. 2. Histogram of the distribution of the optimal analysis
window size for features from Interspeech’2011 collection.

such as mean, variance, etc. tend to group in that plot interval.
In general there is a large contrast between the picture of

Fig. 2 and the number of relevant features for a given fixed
analysis interval length (Fig. 1). This observed difference
suggests that a multi-rate feature acquisition, local classifica-
tion and fusion of local decisions into a global one should be
advantageous strategy for emotion recognition from speech.
4.2. Recognition Experiments
The speech data is split 10-ways for cross-validation by leav-
ing one speaker out (LOSO). Thus each of the 10 test sets
contains the data coming from a single speaker that was not
present in the corresponding training set. For statistical mod-
eling the state-of-the-art emotion recognition system has been
used. The system consists of an openSMILE-based feature
extraction [14] and the boostexter classifier [15]. In separate
experiments on the same database but with a larger feature
set this system has been attaining the best performance of
WA ∼ 85% (LOSO).

The reported baseline system (Table 1 experiment 1)

strictly follows a conventional method of classification of the
unique feature vector, that is computed by openSMILE from
the whole utterance of variable duration.

The whole system performance is evaluated with the help
of two widely accepted figures of merit, the first is weighted
accuracy (WA) and the second is unweighted accuracy (UA):

WA =

∑
∀k NCorrk∑
∀k NTotk

; UA =
1

K

∑

∀k

NCorrk

NTotk

. (4)

Here it is assumed that k = 1..K enumerates the labels;
NCorrk

stands for number of correctly recognized instances
of a given label; NTotk

is a total number of instances of a that
label.

4.2.1. The Optimal Analysis Interval Length and Shift
In majority of emotion labels, the largest number of relevant
features is observed while the analysis window size was ap-
proximately from 1 to 0.5 sec. In the recognition experiment
however the maximum performance is observed for the anal-
ysis window size being 1 sec. See Table 1 for details. The
KST prediction can be used as an approximate indication for
selection of the advantageous analysis interval length.

Table 1. Recognition experiment for different analysis win-
dow length.‘Exp.’- experiment ID; ‘Wind.Size’ - size of the
statistical analysis window; ‘Shift’ - shift in time between
the adjacent windows; ‘WA’ - weighted accuracy; ‘UA’ - un-
weighted accuracy.

Exp. Wind.Size Shift WA UA
1 whole utt. N/A 76.11% 71.82%
2 1.5 sec 1/8 74.79% 71/69%
3 1.0 sec 1/8 76.32% 73.60%
4 0.5 sec 1/8 70.04% 65.45%
5 1.0 sec 1/4 71.05% 69.25%

KST analysis suggests, that a greater overlap of the anal-
ysis windows results in a greater amount of relevant features
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for classification. The recognition experiments are in agree-
ment with this prediction. To illustrate this fact the experi-
ment 5 form Table 1 summarizes results of the recognition
experiment, when the analysis frame shift is increased two
times compared to the experiment 3.

4.2.2. Feature Pruning

Two recognition experiments have been performed to explore
the ability of KST to drive feature selection in the emotion
recognition task. The first experiment aimed at measuring

Table 2. Recognition experiment with reduced feature
sets.‘Em’- emotion label in binary classification task; ‘A’-
anger; ‘B’- boredom; ‘D’- disgust; ‘F’- fear; ‘J’- joy; ‘N’-
neutral; ‘S’- sadness; ‘Cr’- emotion label cardinality within
the test set; ‘BL’ - baseline feature set; ‘Red’ - reduced feature
set; ‘WA’ - weighted accuracy; ‘UA’ - unweighted accuracy;
‘% feat.’ - percent of features retained in the reduced set.

Em (Cr) BL WA BL UA Red WA Red UA % feat.
Feature vector is computed from the whole utterance

A(127) 90.08% 88.18% 90.49% 88.70% 68.06%
B(79) 96.36% 90.14% 96.96% 92.04% 56.98%
D(38) 95.75% 78.48% 96.56% 81.25% 35.07%
F(55) 92.91% 72.95% 94.74% 80.34% 41.90%
J(64) 88.26% 62.00% 87.65% 60.99% 50.66%
N(78) 92.71% 84.21% 93.32% 85.10% 49.61%
S(53) 97.17% 90.11% 96.76% 89.89% 71.22%

Feature vector is computed from the 1.0 sec window, shift 1/8
A(127) 91.09% 88.34% 91.09% 88.60% 80.03%
B(79) 93.52% 82.82% 93.72% 83.45% 73.15%
D(38) 94.13% 70.29% 94.74% 69.41% 53.02%
F(55) 91.09% 62.39% 91.50% 63.41% 49.40%
J(64) 88.87% 61.69% 89.07% 63.13% 65.06%
N(78) 90.28% 74.44% 89.47% 69.79% 65.52%
S(53) 94.74% 84.60% 94.33% 83.55% 82.67%

the impact of pruning unreliable (according to KST) features
from the utterance-level description. The second is the same
measurement for the segmental recognizer with 1 sec obser-
vation window and 125 msec shift. There are 7 binary clas-
sifiers (one for each emotional label), each having its own
set of features, specific for a given emotion label. The fea-
tures which are deemed as not-reliable at a significance value
(p=5e−2) are excluded. The feature pruning is quite severe,
sometimes the cut exceeds 50% of the feature set.

System’s performance in both experiments is reported in
Table 2. KST feature pruning has a positive effect onto the
system performance at the level of individual binary classi-
fiers, in majority of the cases the performance has increased
while the feature set has been reduced. Amount of features
surviving the pruning process may be regulated by a different
choice of the significance level p. Larger p values allow to
retain more features.

5. CONCLUSIONS
In this paper we have applied the two-sample Kolmogorov-
Smirnov test to feature analysis of emotion recognition from
speech and explored its predictions. KST has been able to
correctly predict the effect of the decreased analysis window
shift onto recognition performance. It is also very successful
in predicting which features are safe to prune from the vector.
We also have found that according to KST a multi-rate feature
extraction shall be advantageous for emotion recognition.
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