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ABSTRACT

We propose an acoustic TextTiling method based on segmen-

tal dynamic time warping for automatic story segmentation

of spoken documents. Different from most of the existing

methods using LVCSR transcripts, this method detects story

boundaries directly from audio streams. In analogy to the

cosine-based lexical similarity between two text blocks in a

transcript, we define the acoustic similarity measure between

two pseudo-sentences in an audio stream. Experiments on

TDT2 Mandarin corpus show that acoustic TextTiling can

achieve comparable performance to lexical TextTiling based

on LVCSR transcripts. Moreover, we use MFCCs and Gaus-

sian posteriorgrams as the acoustic representations in our ex-

periments. Our experiments show that Gaussian posterior-

grams are more robust to perform segmentation for the stories

each with multiple speakers.

Index Terms— story segmentation, topic segmentation,

segmental dynamic time warping, TextTiling, spoken docu-

ment processing

1. INTRODUCTION
Story segmentation aims to partition a text, audio or video

stream into a sequence of topically coherent segments named

as stories. It is a necessary pre-processing step for various

tasks such as topic categorization and tracking, summariza-

tion, information extraction, indexing and retrieval [1, 2].

With progress in large vocabulary continuous speech

recognition (LVCSR), lexical cohesion based methods have

drawn much attention for story segmentation of spoken doc-

uments [1, 3]. TextTiling [4] is a typical and efficient lexical

cohesion based approach that has been introduced to seg-

ment spoken documents such as broadcast news (BN) [1] and

meeting recordings [3]. While TextTiling performs boundary

identification using the similarities between adjacent sen-

tences, some other methods such as dynamic programming

(DP) [5] take into account some global criteria based on all

the inter-sentence similarities in a spoken document. One

disadvantage of the lexical cohesion based methods is that

the performance heavily relies on an LVCSR system, which

is built using considerable linguistic resources and requires

tremendous effort to collect a large amount of training data.

Consequently, researchers have been interested in process-

ing spoken documents without using LVCSR. Specifically,

speech prosodic cues have received attention for story seg-

mentation task [1, 2]. However, prosodic cues depend on ed-

itorial and production rules which vary from different media

sources. Finding acoustic pattern repetitions in speech [6, 7]

has been another interesting research topic recently.

In this paper, we present an acoustic TextTiling method

to detect story shifts without using LVCSR. While lexical

TextTiling measures semantic variations between adjacent

stories in a transcript, our method achieves this directly from

the corresponding audio stream. The core technique for

acoustic TextTiling is a segmental dynamic time warping

(SDTW) algorithm proposed by Park and Glass for word

discovery [6]. The SDTW algorithm finds alignment paths

between two given utterances in vector representation. These

paths probably correspond to similar acoustic patterns (and

therefore common words and phrases) in the two utterances.

Malioutov et al. [8] employed the SDTW algorithm for story

segmentation on lectures each with a single speaker. How-

ever, there are usually multiple speakers present in real-world

spoken documents such as meeting recordings or news pro-

grams. So we propose to use acoustic TextTiling for story

segmentation of spoken documents with multiple speakers.

We use the SDTW algorithm to find repeated acoustic

patterns in adjacent pseudo-sentences in a spoken document.

Acoustic TextTiling is applied to measure similarities be-

tween the adjacent pseudo-sentences based on the repeated

patterns. The local minima of the similarity values indicate

the boundaries between stories. We use mel frequency cep-

stral coefficients (MFCCs) and Gaussian posteriorgrams as

the signal representations. The latter has been demonstrated

to be effective for discovering patterns between utterances

from different speakers [9]. In our experiments, we com-

pare the two representations for story segmentation of spoken

documents with multiple speakers.

2. LEXICAL TEXTTILING FOR STORY
SEGMENTATION

The classical TextTiling algorithm is composed of three steps:

tokenization, lexical score determination and boundary iden-

tification. The tokenization step splits a text stream into indi-

vidual lexical terms. In lexical score determination, the Text-
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Tiling algorithm first divides the text into sentences. Lexical

similarities are calculated at all sentence boundaries:

Cos(si, si+1) =

∑M
k=1 ei,kei+1,k√∑M

k=1 e
2
i,k

∑M
k=1 e

2
i+1,k

(1)

where si and si+1 are term frequency vectors of the ith and

the (i+1)th sentences respectively. ei,k is the kth element of

si, representing the frequency of term tk appeared in the ith
sentence. M is the vocabulary size.

In the next step, we adopt relative scores [2] instead of the

lexical similarity scores for boundary identification:

Rel(si, si+1) = (Cos(si−1, si)− Cos(si, si+1))

+ (Cos(si+1, si+2)− Cos(si, si+1)) (2)

If Rel(si, si+1) exceeds a pre-defined threshold γ, a story

boundary is assigned between the ith and the (i + 1)th sen-

tences. The parameter γ is tuned on a development set.

3. ACOUSTIC TEXTTILING FOR STORY
SEGMENTATION

The intuitive idea of lexical TextTiling is that different stories

employ different sets of words and the shifts in vocabulary

use indicate the boundaries between stories. Specifically, sen-

tences in a story usually employ the same set of words such

as person names and place names which are keys to topic dis-

crimination. Analogously, we believe that the repetitions of

similar acoustic patterns can be found in the utterances of a

story, and this can reflect story shifts in a spoken document.

3.1. Sentence Construction
A text document is composed of sentences that separated by

delimiters, e.g., periods. However, sentence delimiters are

not readily available in speech. A natural thought is to use

significant pauses as delimiters, resulting in pause-separated

pseudo-sentences [5].

Firstly, pause-separated utterances are formed when we

employ a voice activity detector (VAD) to detect significant

pauses with duration longer than ψ in an audio recording.

Secondly, pseudo-sentences are formed by concatenating a

number of utterances. For instance, if a pseudo-sentence p
contains utterances (us, · · · , ue), the utterance ue+1 will be

added in if: 1) the total duration of (us, · · · , ue) is less than

α; and 2) the pause region between ue and ue+1 is less than β.

Otherwise, p is formed by (us, · · · , ue) and ue+1 is considered

as the beginning of the next pseudo-sentence. The parame-

ters are empirically set as ψ=0.32 second, α=10.2 seconds

and β=0.96 second. It aims to prevent the pseudo-sentences

from being too short or too long, because the similarity scores

between two long sentences and between a long and a short

sentence are probably incomparable [5].

3.2. Feature Vectors
For the vector representation of speech signals, we first use

MFCCs that are widely used in speech processing applica-

tions, e.g., LVCSR. Each speech frame is represented by

a standard 39-dimensional MFCCs (25ms windows, 10ms

step). An additional process of whitening is carried out to

make elements of the feature vectors uncorrelated and nor-

malize the variance in each dimension [6].

Zhang et al. [9] has demonstrated that Gaussian posterior-

grams are more effective for comparing speech from different

speaker in the task of pattern discovery. So we train a Gaus-

sian mixture model (GMM) on all speech frames of whitened

MFCCs to generate Gaussian posteriorgram vectors.

Given two utterances, ux and uy , we can represent

them as two time series of feature vectors, (x1, · · · , xn)

and (y1, · · · , ym), respectively. n and m denote the num-

ber of frames in ux and uy . We define a distance matrix D
to measure the distances between the frame vectors of the

two utterances. For MFCC vectors, the Euclidean distance

measure is used:
dij = ‖xi − yj‖, (3)

and for Gaussian posteriorgram vectors, a negative log inner-

product is used:
dij = − log(xi · yj), (4)

where dij denotes the distance between the ith frame of ux
and the jth frame of uy .

3.3. Segmental Dynamic Time Warping
The SDTW algorithm [6] divides the distance matrix D into

a set of diagonal bands of width R and searches for an op-

timal alignment path within each band. A band overlap of

50% is used to take into account alignment paths across seg-

mentation boundaries [9]. So the total number of bands N
is �n−1

R + m−1
R �. For each band, an optimal alignment path

that minimizes the total distance between the two time series

of feature vectors is obtained using the traditional dynamic

time warping (DTW) algorithm. Instead of an entire optimal

alignment path, we are interested in portions of the optimal

alignment path that probably correspond to similar acoustic

patterns in the two utterances. Therefore, we divide the op-

timal alignment path into a number of fragments each with

the average distance score smaller than a threshold θ and the

length at least L as follows.

For an optimal alignment path with length Np in a band,

we use a path refinement algorithm proposed by Lin et al. [10]

to locate its length-constrained minimum average (LCMA)

fragment. The LCMA fragment is a fragment with the small-

est average distance score and the length at leastL in the given

path. The average distance score of the LCMA fragment is:

f = min
1≤s<t≤Np

1

t− s+ 1

t∑
k=s

dikjk , t− s+ 1 ≥ L (5)

where dikjk is the distance value of the kth entry in the path,

ik and jk denote the row and column indices of this entry in

matrix D. If the average distance score f of the LCMA frag-

ment is larger than a threshold θ, the LCMA fragment is dis-

carded because it is less likely that this fragment corresponds

to two similar acoustic patterns. Secondly, the path refinement
algorithm is employed to iteratively find out all the fragments
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Fig. 1. Fragments discovered between two utterances by

MFCC-based SDTW. R=10, L=50, θ=6.0.

in the optimal alignment path with the average distance score

smaller than θ and the length at least L.

Figure 1 shows an example of the fragments discovered

between two utterances by the SDTW algorithm. In this ex-

ample, speech frames are represented by MFCCs. There are

two word repetitions between the two utterances, the Chi-

nese words (USA) and (expressed). We

can observe that multiple fragments from different bands have

been labeled by red bold lines in the cross regions where the

same words occur in the two utterances. The fragment with

the smallest average distance score 4.7945 corresponds to the

repetition of word (expressed), and so do the frag-

ments with the average distance scores 4.8034 and 5.7562.

Since the band overlap of 50% is used, any cross region where

similar acoustic patterns occur in two utterances would be

covered by more than two bands. Thus multiple fragments

from different bands are supposed to be found in the cross re-

gion. If only one fragment is found in the cross region, we

treat the fragment as unreliable and discard it.

3.4. Acoustic Similarity
To calculate the similarity between two utterances, the aver-

age distance scores of all the reserved fragments are used:

Utt Sim(ux, uy) =
Nf∑
i=1

(1− fi
θ
), (6)

where Nf denotes the number of the fragments reserved, and

fi is the average distance score of the ith fragment.

Since each pseudo-sentence may contain several paused-

separated utterances, the acoustic similarity between two

pseudo-sentences pi (u1, · · · , uK) and pi+1 (v1, · · · , vL) is

defined as the sum of the similarities between the utterances

in the two sentences:

Sent Sim(pi, pi+1) =
K∑

k=1

L∑
l=1

Utt Sim(uk, vl), (7)

where uk is the kth utterance of the first sentence pi, vl is the

lth utterance of the second sentence pi+1,K and L denote the

number of utterances in the two sentences, respectively. After

that, we use relative scores as defined in Eq. (2) to identify

the story boundaries.

4. EXPERIMENTS
4.1. Corpus and Experiment Setup
We experimented on the TDT2 Mandarin BN corpus1 which

contains about 53 hours of Mandarin BN audio from Voice of

America (VOA). To appropriately compare the performance

of using the MFCC and Gaussian posteriorgram representa-

tions for story segmentation, all the episodes with multiple

speakers were selected. They include 48 short episodes with

length around 10 minutes and 39 long episodes with length

around 60 minutes. The corpus provides manually annotated

meta-data including story boundaries and LVCSR transcripts

with the word error rate of 37%. The 48 short episodes were

divided into two non-overlapping sets: a development set of

24 episodes with 307 story boundaries for parameter tuning

and a test set of 24 episodes with 308 story boundaries for per-

formance evaluation. The 39 long episodes were also divided

into a development set of 20 episodes with 607 story bound-

aries and a test set of 19 episodes with 654 story boundaries.

According to TDT2 standards, a detected story boundary is

considered correct if it lies within a 15-second tolerant win-

dow on each side of a manually-annotated reference bound-

ary. The balanced F1-measure, i.e., the harmonic mean of

precision and recall, was adopted as the evaluation criterion.

We experimented with lexical TextTiling on LVCSR tran-

scripts and acoustic TextTiling on audio recordings repre-

sented using MFCCs and Gaussian posteriorgrams. We first

conducted empirical parameter tuning on the development set

to obtain optimal parameter setting that achieved the best per-

formance of story segmentation, and carried out evaluation on

the test set using the best-tuned parameters. The parameters

were diagonal bands width R, fragment length constraint L
and distance pruning threshold θ.

4.2. Results and Analysis
The segmentation performance of acoustic and lexical Text-

Tiling approaches is summarized in Table 1. In this study,

we take the word-based lexical TextTiling as the baseline [5].

We observe that acoustic TextTiling using the Gaussian pos-

teriorgram representation achieves comparable F1-measures

on both the short and long episodes (0.6596 and 0.3986 re-

spectively) to word-based lexical TextTiling using LVCSR

(0.6597 and 0.4197 respectively). Moreover, acoustic Text-

Tiling using the MFCC representation achieves the best F1-

measure of 0.7086 on the short episodes but the worst F1-

measure of 0.3482 on the long episodes. These results are

further confirmed by statistical significance tests.

Table 2 reports the performance in detecting word rep-

etitions by using the MFCC and Gaussian posteriorgram

representations in SDTW on (a) short episodes and (b) long

episodes. The F1-measure used here is for the evaluation

1http://www.ldc.upenn.edu/Projects/TDT2
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Table 1. Segmentation performance of acoustic and lexical

TextTiling (TT) approaches on (a) short episodes and (b) long

episodes. GPs: Gaussian posteriorgrams

Approach
F1-measure

(a) (b)

Acoustic TT on MFCCs 0.7086 0.3482

Acoustic TT on GPs 0.6596 0.3986

Word-based Lexical TT (baseline) 0.6597 0.4197

Table 2. Performance in detecting word repetitions by using

MFCCs and Gaussian posteriorgrams in SDTW on (a) short

episodes and (b) long episodes

(a)
Approach SDTW using MFCCs SDTW using GPs

Ntran 3060

Nfind 2281 2634

Ncorr 1479 1439

Precision 0.6484 0.5451

Recall 0.4833 0.4703

F1-measure 0.5538 0.5049

(b)
Approach SDTW using MFCCs SDTW using GPs

Ntran 13505

Nfind 18103 12303

Ncorr 3643 3666

Precision 0.2012 0.2980

Recall 0.2698 0.2715

F1-measure 0.2305 0.2841

GPs: Gaussian posteriorgrams;
Ntran: number of word repetitions in LVCSR transcripts;
Nfind: number of acoustic patterns discovered;
Ncorr : number of correctly discovered acoustic patterns.

of pattern discovery. It is different from the one in Table 1.

Since the optimal length constraint L for SDTW in audio

streams is tuned to be 500 ms, the patterns containing only

one Chinese character fail to be discovered. Therefore, for

word repetitions in the LVCSR transcripts, we only take into

account the words involving two or more Chinese characters.

We observe that the results of pattern discovery are consis-

tent with the segmentation performance reported in Table 1.

SDTW using MFCCs performs better than that using Gaus-

sian posteriorgrams for the short episodes, but reversely for

the long episodes. Using MFCCs as the acoustic represen-

tation is ineffective to discover patterns from the utterances

with different speaker. In other words, it is effective to de-

tect speaker changes in speech. In the short episodes, a story

usually includes only one speaker, so speaker changes usually

indicate story shifts. This is probably the reason why MFCC-

based acoustic TextTiling performs the best in the segmenta-

tion of the short episodes. However, since multiple speakers

may occur in a story of a long episode, speaker changes in a

story may be incorrectly considered as story boundaries. This

produces many false alarms which lead MFCC-based acous-

tic TextTiling to the worst F1-measure in the segmentation of

the long episodes.

5. CONCLUSIONS

This paper proposes an acoustic TextTiling method based on

SDTW to measure semantic variations directly from audio

streams and identify the story boundaries. Our experimental

results demonstrate that acoustic TextTiling perform compa-

rably to lexical TextTiling for story segmentation of spoken

documents with multiple speakers. In the future, we will ex-

tend our work to some segmentation methods in which global

criteria [5] are used for story boundary identification. In this

case, we will take into account all the inter-sentence acoustic

similarities in a spoken document.
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