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ABSTRACT

Automatic literacy assessment is one promising application of
speech and language processing research. In our previous work,
we showed we could accurately predict children’s overall ability to
read a list of English words aloud, an integral component of early
literacy assessment. In this paper, we improve upon our results by
exploiting the fact that evaluators’ level of agreement significantly
varies, depending on the child being judged. This source of evaluator
variability is directly modeled using generalized least squares linear
regression. In this framework, the children for which the evaluators
were more confident in rating are weighted higher. Performance in
predicting the mean evaluator’s scores increases from a Pearson’s
correlation coefficient of 0.946 to 0.952, a relative improvement
of 0.63%. This is a significantly higher correlation than the mean
inter-evaluator agreement of 0.899 (p < 0.05). Critically, the mean
and maximum absolute errors are significantly reduced.

Index Terms— Automatic literacy assessment, pronunciation
evaluation, children’s speech, generalized least squares regression

1. INTRODUCTION

Literacy assessment is an important aspect of children’s early edu-
cation. Automatic literacy assessment has the potential to help with
this process by taking some of the burden off teachers, allowing them
to concentrate on lesson planning and providing individualized help
to their students. Automatic literacy assessment research has been
applied to children of all ages and reading skill levels, through pro-
nunciation evaluation of basic reading tasks like correctly reading
letter-sounds and letter-names [1] and isolated words [2–4], to read-
ing full sentences and stories [5–7].

While the majority of automatic literacy assessment research has
focused on detecting reading errors made by the child, there is also
a need to automatically estimate children’s overall performance on
a reading task. These high-level integrative assessments may be es-
pecially important for student stratification, providing a teacher with
an objective way to quickly identify students that may need more
assistance. Automatically quantifying overall performance may also
be useful to track children’s progress over time.

Our previous work in [4] demonstrated one approach to automat-
ically predicting young children’s overall performance in reading a
list of words aloud. In this research, multiple evaluators first listened
to the children’s speech and rated their overall reading ability on a
scale from 1 to 7. Next, acoustic features were extracted that were
correlated with cues evaluators stated were most important: pronun-
ciation correctness, fluency, and speaking rate. Finally, we used su-
pervised least squares linear regression techniques that predicted the
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average evaluator’s ratings with Pearson’s correlation of 0.946; this
exceeded the average inter-evaluator agreement correlation of 0.899,
although not significantly at the 5% significance level (p > 0.05).

One weakness to our proposed approach in [4] was that we did
not take into account the fact that the variability in ratings across
evaluators was not constant for all children; evaluators were in com-
plete agreement for some children and disagreed more for other
children. This variable level of evaluator uncertainty could poten-
tially be incorporated during model training. In addition, we will
show that this heteroscedasticity in evaluators’ subjective judgments
(having a non-constant variance) violates an assumption of the least
squares linear regression techniques proposed in [4]. We addressed
this weakness in this paper by employing generalized least squares
linear regression methods that account for this “variable variability”
in evaluators’ scores across children.

Section 2 describes the corpus and human evaluation, and Sec-
tion 3 discusses the acoustic features we extracted. Section 4 de-
scribes the baseline and proposed supervised learning methods used
to predict the children’s overall reading ability. The results are pre-
sented and discussed in Section 5, and the conclusions and intended
future work are provided in Section 6.

2. CORPUS

2.1. TBALL Project & Corpus

The Technology-Based Assessment of Language and Literacy
(TBALL) Project was established to automatically assess the En-
glish literacy skills of young children in early education from multi-
lingual backgrounds [8, 9]. Toward this goal, we designed a human-
computer interface to test children in kindergarten to second grade
on age-appropriate reading tasks. The recorded speech data, col-
lected from children in actual elementary schools in California using
a close-talking microphone, makes up the TBALL Corpus [10].

For our previous and current work, we analyzed a subset of chil-
dren who were administered the isolated word-reading task. For this
task, children read aloud a list of 55 pre-determined English words
that progressively became more challenging; the list started with the
word, “map,” and ended with, “transportation.” One word was dis-
played on the computer monitor at a time, and the child had up to
five seconds to say the word before the next one was shown.

We noticed several interesting spoken phenomena during this
isolated word-reading task. In an annotated subset of the data com-
prised of 2800 single-word utterances, we found that 37.1% of the
target words were mispronounced. In addition, there were a variety
of disfluencies; these included hesitations (e.g., partial word repeti-
tions), sound-outs (where the child would say each individual phone
in the target word before pronouncing the full word), elongations
(unnaturally lengthening a phone or syllable of the target word) and

5069978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



eval 1 2 3 4 5 6 7 8 9 10 11 mean
corr 0.83 0.84 0.87 0.89 0.89 0.91 0.92 0.92 0.93 0.94 0.95 0.899

Table 1. Inter-evaluator agreement between the 11 evaluators, com-
puted as the Pearson’s correlation between an individual evaluator’s
scores and the mean scores of the other 10 evaluators.

speaking the target word with a question intonation (perhaps con-
veying uncertainty). We found that 23.0% of the 2800 single-word
utterances contained at least one disfluency [4]. Finally, the chil-
dren spoke at different speaking rates, with some children immedi-
ately saying the words out loud when they were displayed and others
needing the full five seconds to read each word.

2.2. Subjective human evaluation

To analyze how these various factors (pronunciation correctness, flu-
ency, speaking rate) affected evaluators’ perception on the children’s
performance, we selected 42 children that displayed a wide variety
of performance levels and reading styles. Eleven English-speaking
evaluators listened to the speech of the 42 children and rated each on
his/her “overall reading ability.” These subjective judgments were
on an integer scale from 1 (“poor”) to 7 (“excellent”).

While none of the 11 evaluators were licensed teachers, we
found in previous work that the inter-evaluator agreement between
teachers and non-experts was not significantly different for a related
pronunciation verification task [11]. In this study, we computed
inter-evaluator agreement by calculating Pearson’s correlation coef-
ficient between the scores of an individual evaluator’s scores and the
mean scores of the other ten evaluators. Table 1 shows that agree-
ment ranged from 0.83 to 0.95, with mean inter-evaluator agreement
of 0.899. Since all 11 evaluators’ agreement statistics were high, we
chose to treat each evaluator equally in this work. Please see [4] for
more information on the 11 evaluators’ backgrounds.

Figure 1 is a plot of the mean and standard deviation in the over-
all reading ability scores assigned to each child, computed across all
evaluators. We see from this figure that the mean scores ranged from
1.55 to 7, and the standard deviations ranged from 0 (all evaluators
agreed for 2 of the 42 children) to 1.29. The lowest standard devia-
tions occurred for the children with higher mean scores. This makes
numerical sense for the children with mean scores greater than 6.5
because all evaluators assigned scores of 6 or 7. However, it can also
be argued that these children are objectively easier to grade, since
they spoke most of the words correctly and had few disfluencies.

On the other hand, evaluators tended to agree less for the chil-
dren with more pronunciation errors and more disfluencies; these
cues may have impacted the evaluators to differing degrees. Thus, it
can be argued that it is more subjective to grade the children with the
higher standard deviations. In particular, the child with the highest
standard deviation (who was assigned scores that ranged from 2 to 7)
pronounced almost all of the words correctly but sounded out each
word beforehand; it is possible that some evaluators largely ignored
these sound-out disfluencies, while others felt it was strong evidence
that the child was not (yet) the most skilled reader.

While Figure 1 provides visual evidence that the evaluators’
level of agreement varied across children, we also employed two
statistical hypothesis tests for heteroscedasticity: Levene’s test [12]
and the Brown-Forsythe test [13]. For both tests, we could reject
the null hypothesis of homoscedasticity in the evaluators’ scores at
the 5% significance level (Levene’s: p < 0.001, Brown-Forsythe:
p < 0.05). This validates our decision in this work to pursue gener-
alized least squares linear regression methods, which do not assume
the evaluators’ overall scores have equal variance for each child.
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Fig. 1. The mean and standard deviation in the overall scores as-
signed to each child, computed across all 11 evaluators.

3. ACOUSTIC FEATURE EXTRACTION

We used the identical set of acoustic features in this paper as in our
past work [4]. The feature extraction was a two stage process. In the
first stage, we extracted 48 “scores” for each single-word utterance
spoken by the 42 children. Each score was related to one of three
cues that evaluators stated were important when judging the chil-
dren’s overall reading ability: pronunciation correctness, fluency,
and speaking rate. In the second stage, we computed 12 function-
als (e.g., mean, standard deviation) across all the words spoken by
the child for each of the 48 scores. Therefore, our final feature set
consisted of 576 (48 × 12) features per child.

In the first stage, the 48 scores were broken down as follows:
10 pronunciation correctness, 12 fluency, and 26 speaking rate. The
pronunciation correctness scores were based on two common pro-
nunciation verification methods: 1) forced alignment with a dic-
tionary of acceptable and foreseeable unacceptable pronunciations
of the target word, and 2) Goodness of Pronunciation (GOP) scor-
ing [14]. The fluency scores were based on constrained automatic
speech recognition using disfluency-specialized grammars, which
were designed to detect partial word instantiations of the target word.
Finally, the speaking rate scores were based on forced alignment and
captured relevant timing information, such as the speech start time
(relative to when the word was first displayed on the monitor) and
the average speaking rate in units of syllables/s and phones/s. Fur-
ther details on the feature extraction process can be found in [4].

4. LEARNING METHODS

Since we are treating all evaluators equally (Section 2.2), our goal in
this paper was to predict the overall reading ability scores from the
mean evaluator (Figure 1). We explain the baseline system in Sec-
tion 4.1 and our proposed methods in Section 4.2. For all methods,
we used leave-one-out cross-validation to separate training data (41
children) from the test child. We optimized all regression parameters
(e.g., selected features, smoothing/tuning parameters) using another
stage of leave-one-out cross-validation on each train set separately.

4.1. Least squares linear regression

The baseline learning method, least squares (LS) linear regression,
was based on our previous work [4]. The problem is defined as:

y = Xβ + ε, (1)

where y is the n× 1 vector comprised of the mean evaluator scores
for each child, X is the noiseless n×m feature matrix (with a n×1
ones vector appended to account for the intercept/offset term), β is
the m × 1 linear weight vector, and the n × 1 residual vector ε is
assumed to be homoscedastic. The optimal linear weights β̂ that
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Fig. 2. Performance, in terms of Pearson’s correlation, in predicting
the children’s overall reading ability using the weighted least squares
(WLS) method, as a function of the tuning parameter Cw.

minimize the sum of the squared residual, ||y −Xβ̂||2, are:

β̂ls =
(
XTX

)−1

XTy (2)

Due to dimensionality issues and multicollinearity effects, we
did not use all 576 features in X . Instead, we used sequential for-
ward feature selection to iteratively select features and construct X
that maximized Pearson’s correlation between y and Xβ̂ on the train
set. Two or three features were selected, depending on the cross-
validation fold (m = {2, 3}). Therefore, n > m, and we never had
the problem of an under-determined system.

4.2. Generalized least squares linear regression

The least squares solution shown in Equation 2 is only optimal when
the assumption of homoscedasticity in ε holds. However, since we
showed in Section 2.2 that y is heteroscedastic, we see in Equa-
tion 1 that ε too will be heteroscedastic. This led us to employing
generalized least squares linear regression methods [15]. In this for-
mulation, the optimal linear weights, in the least squares sense, are:

β̂ =
(
XTΩX

)−1

XTΩy, (3)

where Ω is a diagonal matrix, with diagonal elements Ωjj = 1/σ2
j ,

where σj is the “true” standard deviation in the overall reading abil-
ity of child j; see [15] for a derivation. In this paper, we estimated
Ω in two ways: 1) by using the scores provided by the 11 evaluators,
and 2) by iteratively estimating Ω from the prediction residuals. We
refer to the former method as weighted least squares (WLS) and the
latter method as feasible generalized least squares (FGLS)1.

Equation 4 shows how we computed the WLS estimate of Ω,
where σ̃j is the estimated standard deviation in the overall reading
ability of child j, computed from the evaluators’ scores (Figure 1),
and Cw is a positive smoothing parameter:

Ωwls = diag

(
1

σ̃2
1 + Cw

, · · · , 1

σ̃2
n + Cw

)
, Cw > 0 (4)

The WLS method has the benefit of requiring only one additional
parameter, Cw, which is needed to avoid numerical problems for the
case when all evaluators agree (σ̃j = 0). Cw can also be viewed as

a tuning parameter; as Cw is increased, the solution to β̂wls (Equa-

tion 3) tends to β̂ls (Equation 2). Figure 2 demonstrates the ef-
fectiveness of the WLS method in predicting the mean evaluator’s
overall reading ability scores for a large range of Cw values.

For the FGLS method, we iteratively estimated Ω. See Algo-
rithm 1 for pseudocode of our implementation, which was based

1FGLS is also commonly known as iteratively reweighted least squares.

Algorithm 1 Feasible generalized least squares (FGLS)

Require: Training data (feature matrix: X , dependent variable: y)

1: Compute weighted least square (WLS) solution: β̂wls

2: Compute WLS residual column vector: εwls = y −Xβ̂wls

3: Compute sum of squared residual: Ewls = εTwlsεwls

4: Initialize FGLS: β̂0 ← β̂wls, ε0 ← εwls, E0 ← Ewls

5: Initialize FGLS iteration counter: i← 0
6: repeat
7: Increment FGLS iteration counter: i← i+ 1
8: Compute diagonal FGLS matrix:

Ωi = diag

(
1

ε2i−1,1+Cf
, · · · , 1

ε2i−1,n+Cf

)
, Cf > 0

9: Compute FGLS coefficients: β̂i = (XTΩiX)−1XTΩiy

10: Compute FGLS residual column vector: εi = y −Xβ̂i

11: Compute FGLS sum of squared residual: Ei = εTi εi
12: until Ei ≥ Ei−1
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Fig. 3. Performance, in terms of the 3 metrics, of the 3 proposed
systems: baseline least squares (LS), weighted least squares (WLS),
and 12 iterations of feasible generalized least squares (FGLS).

on [15]. We first found the WLS solution on the training data and
computed the prediction residual vector, which were used to initial-
ize the FGLS iteration process. At each FGLS iteration i, the resid-
ual vector was used to construct a new FGLS diagonal matrix Ωi

(step 8). The form of Ωi is very similar to Ωwls (Equation 4), except
Ωi is determined analytically from the trained model, while Ωwls is
computed from the evaluators’ scores. The FGLS smoothing param-
eter, Cf , in step 8 of the algorithm is analogous to the Cw term in
Equation 4. We selected Cf using a grid search, choosing the value
that maximized the Pearson’s correlation between the diagonal en-
tries of Ωi and Ωwls; this tuning method was used to avoid over-
training and numerical issues. In steps 9 and 10 of Algorithm 1, new
estimates for the FGLS linear weights β̂i were computed and a new
residual vector was calculated. This iterative process was repeated
until the sum of the squared residuals no longer decreased on the
training data. After convergence, the trained model was then applied
to the test data. We found the FGLS algorithm converged in 3 to 12
iterations, depending on the cross-validation fold.

For illustrative purposes, Figure 3 shows the performance of
the FGLS method in predicting the mean evaluator’s overall read-
ing ability scores, as a function of the FGLS iteration. While we
only attained a small gain in performance over WLS with respect
to Pearson’s correlation, we do get a larger relative boost in perfor-
mance for the two secondary metrics used in our previous work [4]:
the mean absolute error in predictions and the maximum absolute
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System Performance metric

Corr |E|avg |E|max

Least Squares (LS) – Baseline 0.946 0.365 1.601
Weighted Least Squares (WLS) 0.951 0.364 1.601
Feasible Generalized LS (FGLS) 0.952 0.356 1.579

Table 2. Performance, in terms of the 3 metrics, of the 3 proposed
systems: baseline least squares (LS), weighted least squares (WLS),
and feasible generalized least squares (FGLS).

error in predictions (out of the 42 children). This suggests that the
FGLS method helps improve the robustness in estimating the linear
weight coefficients β̂ by starting from the WLS solution and itera-
tively incorporating uncertainty in the trained model.

5. RESULTS & DISCUSSION

Comparable results for the three learning methods, attained by se-
lecting features and optimizing all learning parameters using cross-
validation, are shown in Table 2. We see that both proposed methods
(WLS and FGLS) equaled or outperformed the baseline LS method
for all three performance metrics. While there were no significant
differences in the correlation coefficients of the three methods, the
incremental improvements achieved with the WLS and FGLS meth-
ods made their correlations significantly higher than the mean inter-
evaluator agreement of 0.899 (Table 1), with both p < 0.05.

The WLS method, which directly modeled evaluators’ variabil-
ity across children, achieved a Pearson’s correlation coefficient of
0.951 between the predicted scores and the mean evaluator’s scores,
a relative improvement of 0.53% over baseline LS linear regression.
The best overall system for all three performance metrics was FGLS
linear regression, with relative improvements over baseline LS lin-
ear regression of 0.63%, 2.5%, and 1.4% for the correlation, average
absolute error, and maximum absolute error performance metrics,
respectively. The FGLS method has the benefit of being initialized
with the WLS solution and making further changes based on the het-
eroscedasticity of the residual from the trained model.

6. CONCLUSIONS & FUTURE WORK

In this work, we showed we could improve the predictive power of
a high-level automatic literacy assessment system by incorporating
variability in evaluators’ uncertainty across children. We used two
generalized least squares linear regression techniques that accurately
predicted children’s overall ability to read a list of words aloud, sig-
nificantly outperforming average inter-evaluator agreement. These
methods exploit the fact that there are variable levels of subjectivity
in assessing children’s reading ability, depending on the behaviors
exhibited by the children. We hope the techniques proposed in this
work can be applied to other learning problems that involve model-
ing the perceptions of multiple evaluators.

One area of future work is to take into account evaluator re-
liability, as opposed to treating each evaluator equally; this has
been shown to be advantageous in the context of emotion classifica-
tion [16]. The inter-evaluator agreement statistics listed in Table 1
vary for the 11 evaluators, so it is possible that some evaluators are
more reliable than others. We may be able to predict the evalua-
tors’ scores better if we weighted the scores of the more reliable
evaluators higher. Unfortunately, initial experiments that used eval-
uator reliability-weighted linear combinations of the scores (using
the agreement statistics in Table 1 as a measure of reliability) did

not increase automatic prediction performance. Future research
will experiment with other reliability metrics to find more robust
ways of combining multiple evaluators’ perspectives (e.g., by using
data-dependent evaluator modeling as in [17]).

Finally, we also hope to extend this high-level literacy assess-
ment system to other important reading tasks. Our ultimate goal
is to deploy this type of system in an actual elementary classroom,
where it could be trained to mimic the grading trends of the teacher
or a bank of teachers and provide feedback in near real-time.

7. REFERENCES

[1] M. P. Black, A. Kazemzadeh, J. Tepperman, and S. S. Narayanan,
“Automatically assessing the ABCs: Verification of children’s spo-
ken letter-names and letter-sounds,” ACM Transactions on Speech
and Language Processing, vol. 7, no. 4, article 15, Aug. 2011.

[2] J. Duchateau, L. Cleuren, H. Van hamme, and P. Ghesquière, “Au-
tomatic assessment of children’s reading level,” in Proc. of Inter-
speech, 2007.

[3] J. Tepperman, S. Lee, A. Alwan, and S. Narayanan, “A generative
student model for scoring word reading skills,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 19, no. 2, pp.
348–360, 2011.

[4] M. P. Black, J. Tepperman, and S. S. Narayanan, “Automatic pre-
diction of children’s reading ability for high-level literacy assess-
ment,” IEEE Transactions on Audio, Speech and Language Pro-
cessing, vol. 19, no. 4, pp. 1015–1028, Aug. 2011.

[5] J. Mostow, S. F. Roth, E. G. Hauptmann, and M. Kane, “A proto-
type reading coach that listens,” in Proc. of AAAI, 1994.

[6] P. Cosi and B. Pellom, “Italian children’s speech recognition for
advanced interactive literacy tutors,” in Proc. of Interspeech, 2005.

[7] A. Hagen, B. Pellom, and R. Cole, “Highly accurate children’s
speech recognition for interactive reading tutors using subword
units,” Speech Communication, vol. 49, no. 12, pp. 861–873, 2007.

[8] A. Alwan, Y. Bai, M. P. Black, L. Casey, M. Gerosa, M. Heritage,
M. Iseli, B. Jones, A. Kazemzadeh, S. Lee, S. Narayanan, P. Price,
J. Tepperman, and S. Wang, “A system for technology based as-
sessment of language and literacy in young children: The role of
multiple information sources,” in Proc. of MMSP, 2007.

[9] P. Price, J. Tepperman, M. Iseli, T. Duong, M. P. Black, S. Wang,
C. K. Boscardin, M. Heritage, P. David Pearson, S. Narayanan, and
A. Alwan, “Assessment of emerging reading skills in young native
speakers and language learners,” Speech Communication, vol. 51,
no. 10, pp. 968–984, 2009.

[10] A. Kazemzadeh, H. You, M. Iseli, B. Jones, X. Cui, M. Heritage,
P. Price, E. Anderson, S. Narayanan, and A. Alwan, “TBALL data
collection: The making of a young children’s speech corpus,” in
Proc. of Interspeech, 2005.

[11] J. Tepperman, J. Silva, A. Kazemzadeh, H. You, S. Lee, A. Alwan,
and S. Narayanan, “Pronunciation verification of children’s speech
for automatic literacy assessment,” in Proc. of Interspeech, 2006.

[12] H. Levene, “Robust tests for equality of variances,” in Contri-
butions to Probability and Statistics, I. Olkin, Ed., pp. 278–292.
Stanford University Press, Palo Alto, CA, 1960.

[13] M. B. Brown and A. B. Forsythe, “Robust tests for the equality
of variances,” Journal of the American Statistical Association, vol.
69, no. 346, pp. 364–367, 1974.

[14] S. M. Witt and S. J. Young, “Phone-level pronunciation scoring
and assessment for interactive language learning,” Speech Com-
munication, vol. 30, no. 2-3, pp. 95–108, 2000.

[15] R. J. Carroll and D. Ruppert, Transformation and Weighting in
Regression, chapter 2: Generalized least squares and the analysis
of heteroscedasticity, Chapman & Hall, New York, NY, 1988.

[16] K. Audhkhasi and S. S. Narayanan, “Emotion classification from
speech using evaluator reliability-weighted combination of ranked
lists,” in Proc. of ICASSP, 2011.

[17] K. Audhkhasi and S. S. Narayanan, “Data-dependent evaluator
modeling and its application to emotional valence classification
from speech,” in Proc. of Interspeech, 2010.

5072


