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ABSTRACT

In this paper, we propose to use an utterance-level latent topic tran-
sition model to estimate the latent topics behind the utterances, and
test the performance of such model in extractive speech summariza-
tion. In this model, the latent topic weights behind an utterance are
estimated, and these topic weights evolve from an utterance to the
next in a spoken document based on a topic transition function rep-
resented by a matrix. We explore different ways of obtaining such
topic transition matrices used in the model, and find using a set of
matrices estimated with utterances clustered from a training spoken
document set is very useful. This model was shown to be able to
offer extra performance improvement when used with the popularly
used Probability Latent Semantic Analysis (PLSA) in preliminary
experiments on speech summarization.

Index Terms— Latent Topic Transition Modeling, Speech Sum-
marization

1. INTRODUCTION

Latent topics have been widely used for analysing both text and spo-
ken documents by discovering word clustering patterns in the docu-
ments and somehow projecting each document to a latent topic space
constructed through such word clusters. Such latent topic informa-
tion has been found very useful in many applications such as con-
cept matching in information retrieval, document summarization and
clustering, and key term extraction. In many cases, it is desired to
have more precise latent topic information on sentence level (or ut-
terance level) rather than for each document, and the latent topic
information for each sentence (utterance) can be estimated by sim-
ply treating a sentence (utterance) as a short document and directly
applying the latent topic analysis methods developed for documents.
However, since a sentence (utterance) usually contains only several
terms, very often the latent topics cannot be well estimated unless
the context is considered. For example, assume a news story about
golf is being analysed. An utterance with the term “Tiger Woods”
but without the term “golf” may be viewed as about “animals” al-
though it is very likely to be more related to “sports”. Therefore,
utterance-level latent topic analysis may not be as straightforward
as document-level. The problem is more difficult for spoken docu-
ments with serious recognition errors since it is possible that very
limited terms are recognized correctly within an utterance. More-
over, utterance boundaries are not clear in a spoken document, so
automatically segmented utterances may not be as well formed as in
text. In reality, natural speech rarely consists of isolated, unrelated
utterances but rather collocated, structured and coherent utterances.
Hence, an utterance with the term “Tiger Woods” may be found to be
about “sports” if the neighboring sentences are about “sports”, even

if no terms related to “sports” actually appear in the utterance being
considered.

Although unsupervised learning of linguistic structure have been
widely studied[1], not too many topic models have ever attempted to
model similar structural dependency among topics. Hidden Markov
Models have been successfully used for capturing topic transition in
summarization [2, 3], but the assumption that each sentence is gen-
erated from a single latent topic instead of a topic mixture may not
be sufficient. The Hidden Topic Markov Model (HTMM)[4] was
extended from Latent Dirichlet Allocation by modeling the topic de-
pendency between adjacent sentences, but in HTMM the topic de-
pendency is simply binary: the topics of a sentence are either inde-
pendent of or exactly the same as the previous sentence. Structural
Topic Model (strTM)[5] further improved HTMM by assuming that
adjacent sentences follow a topic transition relation, but it is on text
documents only rather than spoken documents.

In this paper, we propose to use an utterance-level latent topic
transition model for spoken documents, in which a topic transition
function is used to model the change of latent topic weights across
adjacent utterances, so the topic weights of an utterance depend not
only on the terms in the utterance being considered, but also on the
topics of the preceding utterance. We then apply this model in ex-
tractive speech summarization, in which a number of indicative ut-
terances was selected from the given spoken documents according
to a target summarization ratio, and contatenated together to form
the summary. In such speech summarization tasks, it is important
to identify utterances that carry concepts closer to the document
as a whole, and it has been verified that measuring the topic-based
utterance-document similarity is more effective than the word-based
alternative, because the former is vulnerable to problems like syn-
onyms and recognition errors. By enhancing the topic estimation
process by topic transition modelling, more accurate latent topic
weights in each sentence can be used for sentence-document sim-
ilarity measure.

2. SENTENCE-LEVEL
LATENT TOPIC TRANSITION MODEL

The proposed utterance-level topic transition model for spoken doc-
uments is shown in Fig. 1. θt is a K-dimensional topic weight vector
for the t-th utterance in the spoken document, and K is the number
of topics. θt[k] is the k-th component of θt representing the weight
of topic k for the t-th utterance. Here the topic weights of an ut-
terance are not restricted to be non-negative. We assume that θt
depends on θt−1, the topic weights of the preceding utterance based
on the following relationship,

θt = Ft(θt−1) + εθt = Mtθt−1 + εθt . (1)
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Fig. 1: The utterance-level latent topic transition model. θt is a hid-
den K-dimensional topic weight vector of the t-th utterance in a spo-
ken document, and K is the number of topics. The observation xt is
a V -dimensional vector representing the normalized term frequen-
cies of the t-th utterance, and V is the lexicon size. θt−1 evolves to
θt based on a topic transition matrix Mt, while the observations xt

is generated from the hidden vector θt through a matrix C. Mt is a
K ×K matrix, and C is a V ×K matrix.

Ft(.) is the latent topic transition function modeling the relation be-
tween θt−1 and θt. Although Ft(.) can be of any form, here we as-
sume the relation is linear and modeled by a K ×K matrix Mt. ε

θ
t

is a K-dimensional prediction error vector absorbing the difference
between θt and Mtθt−1. The transition matrix Mt can be defined
based on some heuristic assumptions or trained with a document set,
as will be clear in Section 3.

The relation between the latent topic weights and the normalized
term frequencies for an utterance is formulated as

xt = Cθt + εxt , (2)

where xt is a vector with dimension V which is the size of the lex-
icon, representing the normalized term frequencies for the t-th ut-
terance. The i-th dimension of the vector xt is the normalized term
frequency of the i-th term wi:

xt[i] =
n(st, wi)∑

wj∈st
n(st, wj)

. (3)

st is the transcription of the t-th utterance in the spoken document
(either 1-best or in lattice form), and n(st, wi) is the frequency of
term wi in st. When st is in the lattice form, the occurrences of
the term should be weighted by recognition scores such as the confi-
dence measure. The matrix C in (2) is a V ×K matrix that models
the term-topic co-occurrence relationships. εxt is a V -dimensional
error vector absorbing the difference between Cθt and xt. Based on
(2),

xt[i] =
K∑

k=1

C[i, k]θt[k] + εxt [i], (4)

where C[i, k] is the [i, k] element of the matrix C, and εxt [i] is the
i-th element of εxt . Based on (4), the value of xt[i], the normalized
term frequency for term wi, is the multiplication of C[i, k] and θt[k]
summed over the K latent topics with error εxt [i]. C[i, k] can be un-
derstood as the normalized term frequency of term wi in an utterance
given a unit weight of latent topic k.

The matrix C above can be obtained in different ways. In the
experiments reported below, C is obtained based on utterance-level
Probability Latent Semantic Analysis (PLSA) [6], which uses a set
of latent topic variables {Tk, k = 1, 2, ...,K} to characterize the

“term-topic” co-occurrence relationships. Given a training utter-
ance set, PLSA training yields {P (wi|Tk), i = 1, 2, . . . , V, k =
1, 2, . . . ,K}, the probability of observing the term wi in an utter-
ance given the topic Tk, and {P (Tk|s), k = 1, 2, . . . ,K}, the mix-
ture weight of topic Tk for all the utterance transcriptions s in the
training set. This is accomplished by the EM algorithm for max-
imizing a likelihood function. Here C[i, k] used in (2) and (4) is
simply set to the probabilities P (wi|Tk) obtained from PLSA.

The problem now is to find the hidden sequence of topic weight
vectors {θ1, θ2, . . . , θT } for a spoken document of T utterances
given the observation sequence of normalized term frequency vec-
tors {x1, x2, . . . , xT }, whereas the latent topic weights θt for each
utterance and the error vectors εθt and εxt are all hidden. To make
the problem tractable, we assume εθt and εxt are both sample vectors
generated from zero-mean normal distributions respectively with
dimensions K and V , and covariance matrices Σθ and Σx. In other
words, although we never know the true latent topic weights gen-
erating the utterances, based on the assumption of the probability
distributions for the error vectors, we can estimate the most possi-

ble topic weight sequence {θ̂1, θ̂2, . . . , θ̂T } given the observations
{x1, x2, . . . , xT }. With (1), (2) and the assumptions about the
distributions generating εθt and εxt , we have

P (θt|θt−1)

∝ exp
{
− 1

2
[θt −Mtθt−1]

TΣ−1
θ [θt −Mtθt−1]

}
(2π)−K/2|Σθ|−1/2,

(5)

P (xt|θt) ∝ exp
{
−1

2
[xt−Cθt]

TΣ−1
x [xt−Cθt]

}
(2π)−V/2|Σx|−1/2,

(6)
and the joint probability for a sequence of normalized term fre-
quencies {x1, x2, . . . , xt} and a sequence of topic weight vectors
{θ1, θ2, . . . , θt},

P ({x1, x2, . . . , xt}, {θ1, θ2, . . . , θt})

=
t∏

n=1

P (θn|θn−1)
t∏

n=1

P (xn|θn). (7)

When the topic transition matrix Mt and the term-topic co-occurrence
relationship matrix C are given, it is possible to find the topic

weight vector θ̂t for the t-th utterance given the observations
{x1, x2, . . . , xt} such that

θ̂t = argmax
θt

P (θt|x1, x2, ..., xt), (8)

where the value of P (θt|x1, x2, ..., xt) is obtainable based on (7).

θ̂t is the best estimate for the topic weight vector θt of the t-th utter-
ance with maximum posterior probability given observations x1 to
xt. Equation (8) here is actually solved by the algorithm of Kalman
filtering [7].

3. DIFFERENT TOPIC TRANSITION MATRIX
Here we assume two forms of the topic transition matrix Mt as pre-
sented below.

3.1. Identity Transition Matrix

Since language is intrinsically cohesive and coherent, the neighbor-
ing sentences are usually about very similar topics; hence it is rea-
sonable to assume that the topic weight vectors of adjacent sentences
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are nearly the same. Therefore, we may set the topic transition ma-
trix Mt equal to the identity matrix for all t (Mt = I), and the
variations in the topic weight vectors of adjacent sentences are thus
all absorbed by the error vectors εθt in (1). The topic weight vector
for the t-th utterance obtained by (8) with the assumption that the

transition matrix is identity is denoted as θ̂0t , which can be used as
the initial topic weight vector for estimation in the next subsection.

3.2. Estimated Transition Matrices

If we have a training spoken document set D 1 and initial topic
weight vectors of all utterances in this set D, we can estimate the
transition matrices iteratively using these data. We first cluster all
the utterances in the document set D in an unsupervised way. In the
experiments below, we used k-means over the PLSA topic weight
vectors for clustering. We assume that the utterances in each clus-
ter thus obtained share the same transition matrix, that is, if there
are R clusters for the document set D, we should have R differ-
ent transition matrices, one for each cluster. At iteration i, a set of
transition matrices {M i

1, . . . ,M
i
r, . . . ,M

i
R} is estimated such that

M i
r for cluster r minimizes the prediction error over all utterances

belonging to the cluster r in D when (1) is applied:

M i
r = argmin

M

∑
d∈D

∑
st−1∈d,

C(st−1)=r

(θ̂i−1
t −Mθ̂i−1

t−1)
T (θ̂i−1

t −Mθ̂i−1
t−1),

(9)
where C(st−1) represents the cluster ID for the transcription of the
t − 1-th utterance, or the cluster which st−1 belongs to, the super-

script T stands for matrix transpose, θ̂i−1
t is the topic weight vector

of st obtained at the iteration i− 1, and the initial topic weight vec-

tor θ̂0t is already obtained in Section 3.1. The second summation in
(9) is over all utterances in the document d belonging to the cluster
r, and the first summation is over all documents d in the set D. Af-
ter obtaining the R transition matrices, the topic transition in (1) is
modified into

θt = M i
C(st−1)θt−1 + εθt . (10)

That is, the transition matrix from θt−1 to θt is M i
C(st−1)

, and

C(st−1) is the cluster st−1 belongs to. Then Kalman filtering is
used to estimate the topic weight vectors for all utterances as in (8),

which can then be used as the topic weight vectors θ̂it for estimating
the transition matrices in the next iteration. After N training itera-

tions, the topic weight vectors θ̂Nt are further used for summarization
in the next section.

4. SPEECH SUMMARIZATION WITH SENTENCE-LEVEL
LATENT TOPICS

In the initial experiments on speech summarization, we used the
Maximum Marginal Relevance (MMR) score [8]. This approach se-
lects in each iteration one utterance from the document to be added
to the summary, which is the utterance with the highest similarity to
the whole document, while adding minimum redundancy to the sum-
mary. This is achieved at each iteration by evaluating a MMR score
for each utterance sa which has not been added to the summary, and
then the utterance with the highest MMR score is selected,

MMR(sa) = λS(sa, d)− (1− λ)S(sa, dsum), (11)

1 In the experiments below, document set D is the documents for summa-
rization.

where S(sa, d) is the similarity measure between sa and the whole
document d, dsum is the summary obtained in the current iteration,
and

S(sa, d) =
1

|d|
∑
sb∈d

SIM(sa, sb), (12)

where SIM(sa, sb) is the similarity measure between sa and sb,
and |d| is the number of utterances in d. Therefore, the first term on
the right hand side of (11) is to be maximized, while the second term
is to be minimized, and the parameters λ is to properly weight these
two goals.

In the experiments to be reported below, three different ap-
proaches were used to estimate the similarity SIM(sa, sb) in (12)
all based on the cosine similarities between the vector representa-
tions va and vb for sa and sb. These three approaches are respec-
tively referred to as word-based, PLSA-based, and transition-based
here. For word-based similarity SIMword(sa, sb), each component
of vi corresponds to a word in the lexicon, whose value is the term
frequency weighted by the latent topic entropy for the term [9].
For PLSA-based similarity SIMplsa(sa, sb), the dimension of va
is the number of latent topics K, and the value of each compo-
nent is simply P (Tk|s) from PLSA. For transition-based similarity

SIMtran(sa, sb), va can be either θ̂0a obtained above in Section 3.1

or θ̂Na obtained in Section 3.2 with different cluster numbers R.
Different similarity measures can be further integrated.

5. EXPERIMENTS

5.1. Experimental Setup

The corpus used in this research is the lectures for a course offered
at National Taiwan University. The lectures were given in the host
language of Mandarin Chinese but with many technical terms ut-
tered in the guest language of English. The lectures covered a to-
tal of 17 chapters, with a total length of 45.2 hours. The corpus
was segmented into 193 documents based on the slides used. The
average document length was about 17.5 minutes. One-best ASR
transcriptions were used for testing. For ASR, the acoustic mod-
els were trained on the ASTMIC corpus for Mandarin and on the
Sinica Taiwan English corpus for English (both included hundreds of
speakers), and then adapted using a 25-minute bilingual corpus from
the target speaker (the course instructor). The language model was
trained with a set of corpus in Chinese, and then adapted with two
other courses offered by the same instructor and the course slides.
The accuracies for the ASR transcriptions were 78.15% for Man-
darin characters, 53.44% for English words, and 76.26% overall.
The reference summaries of 40 documents were provided by grad-
uate students who had taken this course. Only these 40 documents
were used for testing. The utterances in all documents were used in
PLSA and transition matrix training. The transition matrix training
was performed with 5 iterations (N = 5). The ROUGE-1, 2, 3 and L
F-measures with summarization ratios 5%, 10%, and 15% obtained
from the package ROUGE [10] were used to evaluate the summa-
rization results. In the experiments, both Σθ and Σx for εθt and εxt in
(1) and (2) were set to σ2I with σ set to 0.01. The number of latent
topics K was set to 16. λ for MMR in (11) was 0.9.

5.2. Experimental Results

Table 1 lists the ROUGE-1, 2, 3 and L results with 5%, 10% and
15% summarization ratios using different sentence similarity mea-
sures SIM(sa, sb) for the MMR scores in (12). Column (A) shows
the results for word-based similarity, or Sword(sa, sb) was used
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Table 1: The ROUGE-1, 2, 3 and L results with 5%, 10% and 15%
summarization ratios using different utterance similarity measures
SIM(sa, sb) in (12). Pairwised t-test with significance level at 0.05
was used to test the significance. The superscripts α, β , γ and δ

respectively represent significantly better than the results in columns
(A), (B), (C1) and (C2) on the same row. The ROUGE-1 of the
“random”, “head” and “longest” baselines with 5% summarization
ratio are 0.261, 0.244 and 0.228 respectively.

(A) (B) (C)
word word word+PLSA+Topic Transition

ratio +PLSA (C1) Estimated

Iden. (C2) (C3)
Matrix 1 cluster 2 clusters

R
O

U
G

E
-1 5% 0.292 0.289 0.296 0.295 0.298

10% 0.384 0.395 0.400 0.404 0.406α

15% 0.425 0.443α 0.440 0.446α 0.458αγ

R
O

U
G

E
-2 5% 0.121 0.115 0.129 0.123 0.131

10% 0.162 0.173 0.179 0.180 0.189α

15% 0.197 0.211 0.209 0.217 0.240αβγδ

R
O

U
G

E
-3 5% 0.085 0.078 0.092 0.084 0.097

10% 0.112 0.125 0.131 0.131 0.140α

15% 0.146 0.156 0.157 0.163 0.187αβγδ

R
O

U
G

E
-L 5% 0.285 0.281 0.291 0.288 0.295

10% 0.377 0.388 0.393 0.397 0.399α

15% 0.417 0.435α 0.432 0.438α 0.451αγ

for SIM(sa, sb) in (12). Column (B) is the results when PLSA-
based similarity was used in addition, or Sword(sa, sb)Splsa(sa, sb)
was used for SIM(sa, sb) in (12). Column (C) is the results
further integrating the information considering topic transition, or
Sword(sa, sb)Splsa(sa, sb)Strans(sa, sb) was used for SIM(sa, sb)
in (12). Columns (C1), (C2), and (C3) under column (C) are the
results using different topic transition matrices. Pairwised t-test with
significance level at 0.05 was used to test the significance of the
improvements obtained. The superscripts α, β , γ and δ respectively
represent significantly better than the results in columns (A), (B),
(C1) and (C2) on the same row. The ROUGE-1 values of the “ran-
dom”, “head”(selecting the sentences based on their positions in
the documents) and “longest”(selecting the sentences based on their
lengths) baselines with 5% summarization ratios are 0.261, 0.244
and 0.228 respectively, and all the experimental results reported in
Table 1 are much better than the naive baselines.

Comparing the results in columns (A) and (B), we find that al-
though the integration with PLSA topic distributions P (Tk|s) of-
fered improvements in all evaluation measures for 10% and 15%
summairzation ratios, it was useless for 5% summarization ratio. A
possible reason may be the difficulties of utterance-level latent topic
estimation as previously mentioned. An utterance has only a few
terms, so the PLSA latent topic distributions for the utterance did not
correctly reveal the real latent topics for the utterance, thus the sim-
ilarity measure obtained in this way is rough. When only very few
utterances are to be selected (5% summarization ratio), the PLSA
topic distributions did not help select the correct ones.

Next consider columns (C1), (C2) and (C3) using the latent topic

transition model. Comparing column (C1) using the identity matrix
with columns (A) and (B), we note that latent topic transition model
was always better in all the evaluation metrics for 5% and 10% sum-
marization ratios, even if only the identity matrix was used. Next,
columns (C2) and (C3) are the results of using estimated transition
matrices. Only the results of using 1 and 2 clusters, or using 1 and 2
latent topic transition matrices are shown here for space limitation.
We notice that there is no significance difference between using a
single estimated matrix (column (C2)) and the identity matrix (col-
umn (C1)), probably because both of them used only a single topic
transition matrix, and when only one transition matrix can be es-
timated, this transition matrix estimated from the training data set
turned out to be somewhat similar to an identity matrix, which is
reasonable as mentioned above. Moreover, the single estimated ma-
trix (column (C2)) outperformed PLSA (column (B)) in all cases
although the improvements were not significant. When we further
extended the cluster number to 2, we see with 2 transition matrices
to model the topic transitions in column (C3), the results outper-
formed the identity matrix (column (C1)) and the single matrix (col-
umn (C2)) in all cases. Also it can be found that column (C3) was
significantly better than columns (A), (B), (C1) and (C2) in many
cases (indicated by superscriptions α, β , γ and δ). For example,
(C3) was significantly better than column (C2) for ROUGE-2 and
ROUGE-3 with 15% summarization ratio. This verified that the pro-
posed latent topic transition model offered more accurate latent topic
weights behind each utterance.

6. CONCLUSION

In this paper, we propose to model the latent topic transition between
adjacent utterances in a spoken document via a topic transition ma-
trix. We show that this latent topic transition modeling offered im-
provements in speech summarization. Also, a set of transition ma-
trices estimated for clustered utterances in a training document set
turned out to yield very good results.
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