
DISTRIBUTED DISCRIMINATIVE LANGUAGE MODELS FOR GOOGLE VOICE-SEARCH

Preethi Jyothi�† Leif Johnson� Ciprian Chelba† Brian Strope†

�† The Ohio State University
� The University of Texas at Austin

† Google Inc.

ABSTRACT

This paper considers large-scale linear discriminative lan-
guage models trained using a distributed perceptron algo-
rithm. The algorithm is implemented efficiently using a
MapReduce/SSTable framework.

This work also introduces the use of large amounts of
unsupervised data (confidence filtered Google voice-search
logs) in conjunction with a novel training procedure that
regenerates word lattices for the given data with a weaker
acoustic model than the one used to generate the unsuper-
vised transcriptions for the logged data. We observe small
but statistically significant improvements in recognition per-
formance after reranking N-best lists of a standard Google
voice-search data set.

Index Terms— Discriminative language models, Dis-
tributed Perceptron, MapReduce

1. INTRODUCTION

Ngram language models are ubiquitous in automatic speech
recognition (ASR). They are optimized to maximize the like-
lihood of a training set subject to smoothing constraints.
Though these models are robust, scalable and easy to build,
here is an instance where they are lacking. A backoff tri-
gram language model (LM) gives “a navigate to” (which is
grammatically incorrect) a fairly large LM log probability of
-0.266 because both “a” and “navigate to” are popular words
in voice-search! Discriminative language models (DLMs)
aim at directly optimizing error rate by rewarding features
that appear in low error hypotheses and penalizing features
in misrecognized hypotheses. A DLM gives “a navigate to”
a negative weight of -6.5, thus decreasing the chances of
this trigram appearing as an ASR output. There have been
numerous approaches towards estimating DLMs for large
vocabulary continuous speech recognition (LVCSR) [1, 2, 3].

There are two primary concerns with DLMs that we need
to address. Firstly, DLM training requires large amounts of
parallel data (in the form of correct transcripts and candidate
hypotheses output by an ASR system) to be able to effectively
compete with n-gram LMs trained on large amounts of text.
In our experiments, such data is comprised of Google voice-
search logs that are confidence-filtered from a baseline ASR
system to obtain reference transcripts. However, this data is

perfectly discriminated by first pass features and leaves little
room for learning. Thus, we propose a novel training strat-
egy of using lattices generated with a weaker acoustic model
(henceforth referred to as weakAM) than the one used to gen-
erate reference transcripts for the logged data (strongAM).
This provides us with enough word errors to derive large num-
bers of potentially useful word n-gram features, and it is akin
to using a weak LM in discriminative acoustic modeling to
give more room for diversity in the word lattices resulting in
better generalization [4]. Section 4 details experiments on
whether improvements on the weakAM data translate to data
generated with the strongAM.

The second issue is that discriminative estimation of LMs
is computationally more intensive than regular N-gram LM
estimation. The advent of distributed learning algorithms [5,
6, 7] and supporting parallel computing infrastructure like
MapReduce [8] has made it increasingly feasible to use large
amounts of parallel data to train DLMs. We make use of these
techniques by implementing a distributed training strategy for
the perceptron algorithm [6] (more details in Section 2) using
the MapReduce framework (implementation details are spec-
ified in Section 3).

2. LEARNING ALGORITHM

We aim to allow the estimation of large scale distributed mod-
els, similar in size to the ones in [9]. To this end, we make use
of a distributed training strategy for the structured perceptron
to train our DLMs [6].

The conventional structured perceptron [10] is an online
learning algorithm where training instances are processed one
at a time over multiple training epochs. Given a training utter-
ance {xi, yi} (yi ∈ Y has the lowest error rate with respect to
the reference transcription for xi , Y is either a word lattice or
an N-best list that is generated as output by a first pass recog-
nizer), let y∗ ∈ Y be such that it maximizes the inner product
of a high-dimensional feature vector Φ(xi, yi) ∈ R

d, and the
model parameters, w ∈ R

d. Φ(xi, yi) includes AM and LM
costs from the lattice of xi; the rest of the “word features”
extracted from yi are count functions for N-grams of vary-
ing order (we use up to order 3 for our experiments). If the
prediction is incorrect , w is updated to increase the weights
corresponding to features in yi and decrease the weights of
features in y∗. Averaging parameters over the total number of

5017978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Algorithm 1 Distributed Perceptron [6]

Require: Training samples T = {xi, yi}Ni=1

1: w := [0, . . . , 0] /* w ∈ R
d is the output */

2: Partition T into C parts, T1, . . . , TC
3: [μ1, . . . , μC] := [1C , . . . ,

1
C] /* uniform mixing */

4: for t := 1 to T do /* for each training epoch */
5: for c := 1 to C do /* for each partition Ti */
6: wt

c := w, Δt
c := [0, . . . , 0]

7: for j := 1 to |Tc| do /* for each sample in Tc */
8: y∗ := argmaxy w

t
c ·Φ(xc,j , y)

9: if yc,j �= y∗ then
10: Δt

c := Δt
c +Φ(xc,j , yc,j)−Φ(xc,j , y

∗)
11: end if
12: wt

c := wt
c +Δt

c

13: end for
14: w := w + μcw

t
c

15: end for
16: end for
17: return w

utterances and number of training epochs was shown to give
substantial improvements in previous work [10, 1].

We make use of a distributed training strategy for the
structured perceptron that was first introduced in [6]. The
iterative parameter mixing strategy used in this paradigm
can be explained as follows: partition the training data

T = {xi, yi}Ni=1 arbitrarily into C disjoint sets T1, . . . , TC .
Train a structured perceptron model on each data set in par-
allel. After one training epoch, the parameters from each set
are mixed using mixture coefficients μi and re-sent to each
perceptron model for the next training epoch where the pa-
rameter vector is initialized with these new mixed weights.
This is formally described in Algorithm 1; we call it “Dis-
tributed Perceptron”. We also experiment with two other
variants of distributed perceptron training, “Naive Distributed
Perceptron” and “Averaged Distributed Perceptron”. These
models easily lend themselves to be implemented using the
distributed infrastructure provided by the MapReduce [8]
framework. All the variants perform online updates within
a partition (also referred to as “Map chunk”). For clarity,
examine two limit cases: a) using a single Map chunk for the
entire training data is equivalent to the conventional struc-
tured perceptron where on-line updates happen after each
utterance, and b) using a single training instance per Map
chunk is equivalent to batch training. The following sec-
tion describes how these three slightly different variants of
distributed training for the perceptron algorithm can be rep-
resented in Map/Reduce form.

3. IMPLEMENTATION DETAILS

In the MapReduce programming model [8], computations are
expressed as two user-defined functions: Map and Reduce.
Map processes an input key/value pair and generates a set of
intermediate key/value pairs. All intermediate values associ-
ated with the same intermediate key are aggregated and re-

SSTable
Feature-
Weights:

Epoch t+1

SSTable
Feature-
Weights:
Epoch t

SSTable
Utterances

SSTableService

Rerank-Mappers

Identity-Mappers

Reducers

Cache
(per Map chunk)

Fig. 1: MapReduce implementation of reranking using discrimina-
tive language models.

ceived as input by the Reduce function. Typically, the Map
function can be invoked on different parts of the input data
simultaneously. The Reduce function can operate indepen-
dently on a part of the intermediate data where each Reduce
task is assured to receive all the values corresponding to a
given key. The reader is referred to [8] for applications and
implementation details of the MapReduce interface. We use
Google’s SSTable data format ([11], an ordered, immutable
map of key/value pairs) for storing inputs/outputs to/from our
implementation. A format similar to SSTables has been open-
sourced as part of the LevelDB project1.

We have two kinds of Mappers (as illustrated in Fig-
ure 1): one that computes feature updates for the training
data received by a Mapper (Map chunk) for one training
epoch (Rerank-Mapper) and an identity Mapper that provides
feature values from the previous training epoch (Identity-
Mapper). The Reducer combines the outputs from Rerank-
Mapper and Identity-Mapper to produce feature weights for
the current training epoch as its output. The output feature
weights are stored on disk as an SSTable, and later loaded
in memory (one tablet per machine) for serving over the
network as an SSTable service for the next training epoch.
Rerank-Mapper receives training utterances as input and also
requests from the SSTable service the feature values com-
puted in the previous training epoch. Rerank-Mapper stores
the features needed for the current Map chunk in a cache.
This allows us to estimate very large distributed models: the
bottleneck is no longer the total model size but instead the
cache size which is controlled by the Map chunk size.

We experiment with three slightly differing variants of
the structured perceptron in a distributed framework, ex-
plained using the MapReduce paradigm below. The weights
(wt

NP , w
t
DP , w

t
AV) are specific to a single feature f at train-

ing epoch t; φ(·, ·) and Δt
c correspond to feature f ’s value in

Φ and Δt
c from Algorithm 1, respectively.

Naive Distributed Perceptron: For the utterances in each
Map chunk Tc, c = 1 . . . C, the Mappers compute Δt

c =∑Nc

j=1 (φ(xc,j , yc,j)− φ(xc,j , y
∗t
c,j)

)
where Nc = number

of utterances in Map chunk Tc. At the Reducer, we output

wt
NP = wt−1

NP +
∑C

c=1 Δ
t
c.

Distributed Perceptron: The Mappers compute Δt
c as

1http://code.google.com/p/leveldb/

5018

●

●

●

●

●

●

0 50 100 150 200

10
20

30
40

50

N

E
rr

or
 R

at
e

● weakAM−dev SER
weakAM−dev WER
v−search−test SER
v−search−test WER

Fig. 2: Oracle error rates at word/sentence level for weakAM-dev
with the weak AM and v-search-test with the baseline AM.

above. But, at the Reducer, Δt
c is averaged over the total

number of Map chunks (uniformly mixed using weights μc

as in Algorithm 1): wt
DP = wt−1

DP +
∑C

c=1 μcΔ
t
c.

Averaged Distributed Perceptron: For each utterance in

Tc, c = 1 . . . C, let sumΔt
c,j =

∑j
k=1 (φ(xc,k, yc,k)−

φ(xc,k, y
∗t
c,k)

)
; note that the previously defined Δt

c =

sumΔt
c,Nc

. The Mappers compute SumΔc =
∑Nc

j=1 sumΔt
c,j .

Output from the Reducer is wt
AV = t−1

t wt−1
AV + 1

tw
t−1
DP +

1
N t

∑C
c=1 SumΔt

c, where N is the total number of training
utterances.

4. EXPERIMENTAL SETUP AND RESULTS

Our largest models are trained on 87,000 hours of speech,
or ∼350 million words (weakAM-train) obtained by filter-
ing voice-search logs at 0.8 confidence, and re-decoding the
speech with a weakAM to generate N-best. To evaluate our
learning setup we also use a weakAM development/test set
(weakAM-dev/weakAM-test) consisting of 328,460/316,992
utterances, or 1,182,756/1,129,065 words, respectively. We
use maximum likelihood (ML) trained single mixture Gaus-
sians for our weakAM. We use a baseline LM that is suffi-
ciently small (21 million n-grams) to allow for sub-real time
lattice generation on the training data with a small memory
footprint, without compromising on its strength: as shown
in [12], it takes much larger LMs to get a significant relative
gain in WER.

For actual ASR performance on Google voice-search we
evaluate on a standard test set (v-search-test [13]), consisting
of 27,273 utterances, or 87,360 words, and manually tran-
scribed. Our experiments investigate whether improvements
on weakAM-dev/test translate to v-search-test where N-best
are generated using the strongAM, and scored against man-
ual transcripts using fully fledged text normalization instead
of the raw string edit distance used in training the DLM. All
voice-search data used in the experiments is anonymized.

Figure 2 shows the oracle error rates (at the sentence/word
levels) for weakAM-dev generated using a weak AM and
v-search-test generated using the baseline AM. These er-
ror rates are obtained by choosing the best out of the top N
hypotheses—closest in raw string edit distance to correct tran-

2 4 6 8 10

20
25

30
35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)

Perceptron
AveragedPerceptron
DistributedPerceptron

Naive Distributed-Perceptron
Distributed-Perceptron
Averaged Distributed-Perceptron

Fig. 3: Word error rates on weakAM-dev using Perceptron, Dis-
tributed Perceptron and AveragedPerceptron models.

script. Note there are sufficient word errors in the weakAM
data to train DLMs and plenty of room for improvement when
we threshold N to 100.

We elaborate on our experimental results by examining
each of the following aspects of interest:

1. Improvements on weakAM-dev using DLMs: Figure 3
shows the drop in WER over ten training epochs for all the
variants of the perceptron algorithm described in Section 3.
These results are obtained after tuning for the best lattice cost
weight and Map chunk size on weakAM-dev. We observe
that averaging (either over the number of Map chunks as in
“Distributed Perceptron” or over the total number of utter-
ances and total number of training epochs as in “Averaged
Distributed Perceptron”) is crucial for significant gains in
recognition performance; both “Distributed Perceptron” and
“Averaged Distributed Perceptron” perform comparably, with
“Distributed Perceptron” doing slightly better.

Our best-performing “Distributed Perceptron” model
gives a 4.7% absolute (∼15% relative) improvement over
the baseline WER of 1-best hypotheses in weakAM-dev. This
could be attributed to a combination of factors: the discrim-
inative nature of the model or the use of large amounts of
additional training data. We attempt at isolating the improve-
ments brought upon mainly by the first factor by building an
ML trained backoff trigram LM (ML-3gram). This is built
using the reference transcripts of all the training utterances
that were used to train the DLMs. We linearly interpolate
the ML-3gram probabilities with the LM probabilites from
the lattices to rerank the N-best lists in weakAM-dev. Table 1
shows that our best performing model (DLM-3gram) gives a
significant ∼2% absolute (∼6% relative) improvement over
ML-3gram. We also observe most of the improvements come
from unigram/bigram features with DLM-1gram performing
comparably to ML-3gram.

2. Impact of model size on WER: We experiment with vary-
ing amounts of training data to build our DLMs and assess
the impact of model size on WER. These are evaluated on an
unseen data set from the weakAM data (weakAM-test). Ta-
ble 2 shows each model along with its size (measured in total
number of word features), coverage on weakAM-test (number
of word features in weakAM-test that are in the model) and

5019

Table 1: WERs on weakAM-dev using the baseline 1-best system,
ML-3gram and DLM-1/2/3gram.

Data set Baseline
(%)

ML-
3gram
(%)

DLM-
1gram
(%)

DLM-
2gram
(%)

DLM-
3gram
(%)

weakAM-dev 32.5 29.8 29.5 28.3 27.8

●

● ● ● ● ●

1 2 3 4 5 6

20
25

30
35

Training epochs

W
or

d
E

rr
or

 R
at

e(
W

E
R

)

● Map chunk size 64MB
Map chunk size 512MB
Map chunk size 2GB

Fig. 4: Word error rates on weakAM-dev using varying Map chunk
sizes of 64MB, 512MB and 2GB.

WER on weakAM-test. Intuitively enough, the coverage in-
creases as the model size increases and there is a tiny drop in
WER with increasing model size.

We also experiment with varying Map chunk sizes to
determine its effect on WER. Figure 4 shows WERs on
weakAM-dev using our best “Distributed Perceptron” model
with different Map chunk sizes (64MB, 512MB, 2GB). We
attribute the reductions in WER with increasing Map chunk
size to on-line parameter updates being done on increasing
amounts of training samples in each Map chunk.

3. Impact of using a weak AM for training DLMs: We
evaluate our DLMs on v-search-test lattices generated using
a strong AM with the hope that the improvements we saw on
weakAM-dev translate to similar gains on v-search-test. Table
3 shows the WERs on both weakAM-test and v-search-test us-
ing Model 1 (from Table 2). We observe a small but statisti-
cally significant (p < 0.05) reduction (∼2% relative) in WER
on v-search-test over reranking with ML-3gram. This is en-
couraging because we attain this improvement using training
lattices that were generated using a considerably weaker AM.

5. CONCLUSIONS

In conclusion, using DLMs that have been trained with lat-
tices regenerated using a weak AM results in small but signif-
icant gains in recognition performance on a voice-search data
set that is generated using a stronger AM. This suggests that
we could hope for larger improvements by using a slightly
better “weakAM”. Also, we have a scalable implementation
of DLMs which would be useful if we generate the contrastive
set by sampling from text instead of re-decoding logs, [14].
Future work could also include using this reranking frame-
work for longer sentences (YouTube/voicemail) and employ-

Table 2: WERs on weakAM-test using DLMs of varying sizes.

Model Size (in millions) Coverage (%) WER (%)

Baseline 21M - 39.08
Model1 65M 74.8 34.18
Model2 135M 76.9 33.83
Model3 194M 77.8 33.74
Model4 253M 78.4 33.68

Table 3: WERs on weakAM-test and v-search-test.

Data set Baseline (%) ML-3gram (%) DLM-3gram (%)

weakAM-test 39.1 36.7 34.2
v-search-test 14.9 14.6 14.3

ing other learning techniques like minimizing an exponential
loss function (boosting loss).

6. REFERENCES

[1] B. Roark, M. Saraçlar, M. Collins, and M. Johnson, “Discrim-
inative language modeling with conditional random fields and
the perceptron algorithm,” in Proc. ACL, 2004.

[2] J. Gao, H. Yu, W. Yuan, and P. Xu, “Minimum sample risk
methods for language modeling,” in Proc. of EMNLP, 2005.

[3] Z. Zhou, J. Gao, F.K. Soong, and H. Meng, “A comparative
study of discriminative methods for reranking LVCSR N-best
hypotheses in domain adaptation and generalization,” in Proc.
ICASSP, 2006.

[4] R. Schlüter, B. Müller, F. Wessel, and H. Ney, “Interdepen-
dence of language models and discriminative training,” in
Proc. ASRU, 1999.

[5] G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker, “Efficient large-scale distributed training of con-
ditional maximum entropy models,” Proc. NIPS, 2009.

[6] R. McDonald, K. Hall, and G. Mann, “Distributed training
strategies for the structured perceptron,” in Proc. NAACL,
2010.

[7] K.B. Hall, S. Gilpin, and G. Mann, “MapReduce/Bigtable for
distributed optimization,” in NIPS LCCC Workshop, 2010.

[8] S. Ghemawat and J. Dean, “Mapreduce: Simplified data pro-
cessing on large clusters,” in Proc. OSDI, 2004.

[9] T. Brants, A.C. Popat, P. Xu, F.J. Och, and J. Dean, “Large
language models in machine translation,” in Proc. EMNLP,
2007.

[10] M. Collins, “Discriminative training methods for hidden
markov models: Theory and experiments with perceptron al-
gorithms,” in Proc. EMNLP, 2002.

[11] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans-
actions on Computer Systems, vol. 26, no. 2, pp. 1–26, 2008.

[12] C. Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb, W. Neveitt,
C. Parada, and P. Xu, “Query language modeling for voice
search,” in Proc. of SLT, 2010.

[13] B. Strope, D. Beeferman, A. Gruenstein, and X. Lei, “Unsu-
pervised testing strategies for ASR,” in Proc. of Interspeech,
2011.

[14] P. Jyothi and E. Fosler-Lussier, “Discriminative language mod-
eling using simulated ASR errors,” in Proc. of Interspeech,
2010.

5020

