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ABSTRACT
A method for semi-supervised language modeling, which

was designed to improve the robustness of a language model

(LM) obtained from manually transcribed (labeled) data, is

proposed. The LM is implemented as a log-linear model,

which employs a set of linguistic features derived from word

or phoneme n-grams. The proposed method is formulated as

a multi-objective optimization programming problem (MOP),

which consists of two objective functions based on expected

risks for labeled lattices and automatic speech recognition

(ASR) lattices as unlabeled training data. The model is

trained in a discriminative manner and acquired as a solution

to the problem. In transcribing Japanese broadcast programs,

the proposed method reduced word error rate by 6.3% com-

pared with that achieved by a conventional trigram LM.

Index Terms— discriminative training, semi-supervised

training, language modeling, Bayes risk minimization

1. INTRODUCTION

The recent progress in the field of corpus-based spoken-

language processing has led to its successful application in

the real world. NHK (Japan Broadcasting Corp.) has devel-

oped a system for closed-captioning broadcast news using

real-time automatic speech recognition (ASR) [1]. ASR tech-

nology also plays an important role in the development of

a broadcast archiving system, which serves as a basis for

spoken document processing applications. The availability

of these applications strongly depends on the accuracy of

ASR, and recently there has been many interest in applying

discriminative acoustic or language models for improvement.

Although these models typically require a large amount of

manually transcribed (labeled) data, there are only limited

resources available in reality. Information from unlabeled

data such as ASR transcriptions could therefore be useful for

increasing the robustness of the models.

In regard to acoustic modeling, many semi-supervised ap-

proaches for dealing with unlabeled data have been proposed

[2, 3]. In most previous works, the acoustic models are ob-

tained from labeled data in a discriminative manner, while

unlabeled data are incorporated in the models through an ob-

jective function, which is defined in a generative manner. In

the field of language modeling, such semi-supervised training

has not been well studied so far, though supervised discrimi-

native modeling [4, 5] and unsupervised modeling [6, 7] have

been investigated individually.

Under these circumstances, our previous work on unsu-

pervised LM adaptation with a single objective function [8]

is expanded to deal with multiple objectives, and a novel

semi-supervised language modeling method is proposed.

The proposed method is formulated as a multi-objective

optimization programming (MOP) problem, which reflects

contributions from labeled and unlabeled training data to

a language model flexibly. The problem employs objec-

tive functions that are designed for minimizing expected risks

associated with word error rate (WER), and its optimum solu-

tion leads to a discriminatively-trained model. The proposed

semi-supervised language modeling method is discussed and

tested in an evaluation of Japanese broadcast transcriptions.

2. SEMI-SUPERVISED LANGUAGE MODELING

2.1. Log-Linear Language Models

A log-linear formulation of a language model (LM) is intro-

duced in the following.

In ASR, on the basis of the Bayes’ rule, the optimum sen-

tence hypothesis, ŵ, is given by

ŵ = arg max
w

P (w|x) = arg max
w

P (x|w)P (w), (1)

where P (w|x) is a posterior of sentence hypothesis, w, given

an audio input, x. P (x|w) and P (w) are given by an acoustic

model and a language model, respectively. To reflect informa-

tion from labeled and unlabeled training lattices, the posterior

probability is redefined by using a set of linguistic features as

P (w|x; Λ) =
1

Z(Λ)
P (x|w)P (w) exp

∑
j

λjfj(w), (2)

where fj denotes a feature function derived from a word

or phoneme n-gram context, which returns the number of
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sequence occurring in w, and λj ∈ Λ is a weighting fac-

tor. Z(Λ) denotes a normalization factor. Discriminative

language modeling is equivalent to estimating the weighting

factors, Λ, from labeled and unlabeled training lattices when

Eq. (2) is viewed as a discriminative model.

2.2. Semi-Supervised Language Modeling

Semi-supervised language modeling is aimed at increasing

LM robustness by incorporating information from a large

amount of unlabeled lattices. One of the key issues con-

cerning semi-supervised training is how the contribution of

unlabeled lattices is reflected in the LM estimated from the

labeled ones. Although the semi-supervised training is typ-

ically formulated as an optimization problem consisting of

two independent objectives for different training lattices, it is

difficult to find the optimum that minimizes both objectives

simultaneously. To address this issue, the LM is estimated by

introducing an approach called “multi-objective optimization

programming” (MOP) [9], which was successfully applied

for automatic language identification by Yaman et al. [10]. In

this approach, a set of compromise solutions, i.e. a Pareto set,

is obtained by accepting trade-offs between the objectives.

The most preferred solution can be selected among the set. It

indicates that this approach makes it possible to select an LM

appropriate to a target broadcast program from possible LMs.

The ε-constraint method (EPS) is employed to solve a

MOP problem [9]. By this method, one objective function

is converted to an inequality constraint, and the other is mini-

mized under the constraint as follows:

Λ′ = arg min
Λ

L(Λ) s.t. U(Λ) ≤ Ū, (3)

where Ū is a precomputed upper-bound value that is 5 to

20% lower than the objective at Λ = 0. This optimization

is typically solved by using an augmented Lagrangian with a

quadratic penalty [11], which is given by

F (Λ, κ; ρ) = L(Λ) + ρ

〈
κ

2ρ
+ Ū − U(Λ)

〉2

, (4)

where κ is a Lagrange multiplier, and ρ is a penalty parameter.

〈x〉 denotes an operator, max {x, 0}. Since a set of solutions

depending on the configuration of the inequality constraint is

obtained, the solution that minimizes WER for a development

set can be thus selected.

The weighted-sum method (WS) is commonly used to

solve the MOP problem because of its simpleness. The op-

timal solution, Λ′, is given by

Λ′ = arg min
Λ

{μLL(Λ) + μUU(Λ)} , (5)

where μL and μU are weighting factors for individual ob-

jective functions. The drawback of this method is that it

may fail to obtain an optimum when a set of Pareto solutions

forms a non-convex set [12]. The ε-constraint method and the

weighted-sum method are compared in the following section.

3. OBJECTIVE FUNCTIONS

3.1. Risk-Based Objectives

The remaining issue concerning semi-supervised language

modeling is how to design objective functions. With the

proposed method, the objective functions for labeled or unla-

beled training lattices are derived from the Bayes risk (Risk)

[13]. As the objective for the labeled lattices is represented

as a special case of the objective for the unlabeled lattices,

the objectives are naturally integrated in terms of word error

minimization.

Given a training audio input, x
(�)
m (m = 1, . . . ,M), an

objective function based on the Bayes risk [5] is defined as

L1(Λ) =
1
M

M∑
m=1

∑
w∈Lm

R(wr
m, w)P (w|x(�)

m ; Λ), (6)

where R(wr
m, w) is a cost (e.g. Levenshtein distance) defined

between the reference, wr
m, and the hypothesis, w, in the m-

th training lattice, Lm.

The above function is easily extended to deal with unla-

beled lattices [8]. Given an input, x
(u)
n (n = 1, . . . N), the

unsupervised version of the objective is given by

U1(Λ) =
1
N

N∑
n=1

∑
w∈Ln

P (w|x(u)
n ; Λ) ×

∑
w′∈Ln

R(w, w′)P (w′|x(u)
n ; Λ) (7)

In practice, the expected risk for a lattice is efficiently approx-

imated by using edge-wise risks. At edge e, the edge-wise

risk, ζ(e), is given by

ζ(e) ≡
∑

e′∈overlap(e)

�0-1(e, e′)p(e′), (8)

where p(e) is an edge posterior, and �0-1(e, e′) is a cost func-

tion defined between overlapping edges. A simple binary

function given by

�0-1(e, e′) ≡
{

0 if label(e) = label(e′)
1 otherwise,

(9)

is used. The approximate risk of the lattice is computed by the

forward-backward algorithm by using the edge-wise risks. A

detailed description of the approximation can be found in [8].

3.2. Conditional Log-likelihood Based Objectives

One of the conventional discriminative objective functions

used for labeled lattices is based on the negative conditional

log-likelihood (CLL) [4]. The objective is defined as

L2(Λ) = − 1
M

M∑
m=1

log P (wr
m|x(�)

m ; Λ). (10)
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Table 1. Feature Functions

#features

phoneme
bigrams 1.3k

trigrams 12.9k

word
bigrams 731.9k

trigrams 1859.6k

Table 2. Evaluation Data

#utts #words PP OOV(%) WER(%)

Dev. 245 3.5k 125.7 1.5 23.0

Test 551 7.0k 139.4 1.3 22.3

This objective function is analogous that used in maximum

mutual information (MMI) acoustic modeling.

In order to incorporate information from the unlabeled lat-

tices into the CLL-based objective function, we use minimum

entropy regularization introduced in [14]. The regularizer is

defined as conditional entropy given x
(u)
n ,

U2(Λ) = − 1
N

N∑
n=1

∑
w∈Ln

P (w|x(u)
n ; Λ) log P (w|x(u)

n ; Λ).

(11)

Note that the combination of Eqs. (10) and (11) is similar to

semi-supervised acoustic modeling described in [2].

4. EXPERIMENTS

4.1. Setup

NHK’s speech decoder transcribes audio streams of broadcast

programs in real time, while detecting start and end points

of speech segments [15]. The acoustic inputs are parame-

terized into 39 dimensional vectors: 12 mel frequency cep-

stral coefficients (MFCCs) with log-power and their first- and

second-order differentials. The decoder employs a two-pass

strategy that obtains 200-best sentence hypotheses by using

gender-dependent HMMs and a bigram LM in the first pass

and rescores them using a trigram LM with scores derived

from the weighting factors, Λ.

The acoustic models were obtained from a total of 650

hours of speech in broadcast news programs using minimum

phone error (MPE) training [16]. The baseline trigram LM

denoted as P (w) in Eq. (2) was trained on Japanese broadcast

news manuscripts and transcriptions (239M words), and the

vocabulary size was set to 100k. The linguistic feature func-

tions in Eq. (2) were defined by word or phoneme bigrams

and trigrams observed more than five times in the labeled and

unlabeled training lattices (Table 1). The phoneme-based fea-

tures were extracted along with gender information from the

phoneme sequences embedded in the training word lattices.

Table 2 lists the evaluation data, taken from three episodes

Table 3. Training Data

#hours #utts #words WER(%)

Labeled 58.6 26k 697.5k 22.3

Unlabeled 344.1 218.6k 2.84M n/a

Table 4. Experimental Results

Dev Test

Baseline 23.0 22.3

Mixture LM 22.8 22.3

Labeled CLL 22.9 22.1

(supervised) Risk 22.8 22.3

Unlabeled Entropy 22.7 22.2

(unsupervised) Risk 22.3 21.5

Labeled+Unlabeled
WS

CLL+Ent. 22.7 22.0

(semi-supervised)
Risk 22.0 21.2

EPS
CLL+Ent. 22.5 22.0

Risk 21.9 20.9

of an NHK news program, including conversational speech

and voice-overs. Two episodes were used as test data, and the

remaining episode was used as development data.

Table 3 shows the labeled or unlabeled training data. The

labeled data (including conversational speeches on news top-

ics) were taken from the same news program. The unlabeled

data were taken from similar broadcast programs including

conversational speeches, e.g. discussions and debates about

current news topics. Semi-supervised language modeling

was performed on the decoded lattices of these training data.

Since there were no reference transcriptions available for the

unlabeled data, the number of utterances and the number of

words were quantified by the decoder in the table.

4.2. Results

Table 4 lists the WER results for the evaluation data. In the ta-

ble, Baseline denotes the results from the baseline trigram LM

without discriminative training. Two types of MOP methods

for semi-supervised training (Labeled+Unlabeled) were used,

and EPS represents the results obtained by the ε-constraint

method (cf. Eq. (3)), while WS denotes results obtained by

the weighted-sum method (cf. Eq. (5)). For comparison, the

results obtained from linear-interpolated LMs (Mixture LM)

are also shown. The LMs were interpolated between the base-

line LM and the LM estimated from the ASR transcriptions

of unlabeled data. The interpolation weights were estimated

from the development data. The results obtained from the

models trained by the labeled lattices in the supervised man-

ner (Labeled) and those obtained from the unlabeled lattices

in the unsupervised manner (Unlabeled) are also shown.

The results obtained from Mixture LM achieved small

WER reductions for Baseline. The interpolated LMs would
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limit the efficiency of WER reductions because the topics in

the evaluation data are not covered by the unlabeled data. In

supervised language modeling, CLL and Risk also achieved

small WER reductions for Baseline. It is probable that there

are too few training lattices for estimating the weighting fac-

tors with statistical reliability. In contrast to Labeled, Risk

(Unlabeled), which was estimated by using the expected risks

(cf. Eq. (7)), outperformed the model obtained from labeled

training lattices. For the test data, it achieved a WER of 22.3%

and produced relative reduction of 3.6% compared with Base-

line. Since language modeling was carried out using unla-

beled lattices that were over six times larger than the labeled

lattices, a more robust model was obtained.

In the case of semi-supervised language modeling, all the

results for the test data showed further reductions in WER

compared with the results from Labeled and Unlabeled. Es-

pecially, Risk (EPS), which was trained by the ε-constraint

method using risk-based objective functions, achieved WER

of 20.9% for the test data and provided a relative reduction

of 6.3% for Baseline and 2.8% for Risk (Unlabeled), respec-

tively. According to a matched-pair test, WER was decreased

at a significance level of 0.05. Although these results reveal

that the MOP approaches are effective for reducing WER,

no significant differences between the results obtained by

the weighted-sum method (WS) and those obtained by the

ε-constraint method were found. In contrast, the risk-based

objective functions provided significant reductions in WER

compared with the CLL-based objectives regardless of the

MOP approach taken. This is because the risk-based objec-

tives are closely associated with WERs, as is clear from their

definitions denoted by Eqs. (6) and (7). The performance

of semi-supervised language modeling depends on a variety

of factors (such as formulations of objectives and sizes of

the training lattices) rather than on the MOP approach taken.

To design the efficient semi-supervised language modeling

approach, a further experimental study is therefore required.

From a qualitative point of view, the proposed MOP approach

reduced more deletion and insertion errors by short words

such as Japanese particles than Baseline and the CLL-based

approaches.

5. CONCLUSION

A semi-supervised language modeling method, designed to

improve robustness of a language model (LM) obtained from

labeled data, is proposed. The LM is defined as a log-linear

model, which employs a set of linguistic feature functions.

Risk-based objective functions are derived from labeled or

unlabeled training lattices, and the LM is given by a solu-

tion to the problem of multi-objective optimization program-

ming. Experimental results showed that the MOP-based ap-

proach successfully integrates the objectives and significantly

reduces word error rate in transcribing Japanese broadcast

programs. In future work, the model will be modified to in-

troduce regularizers into the risk-based objectives.
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