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ABSTRACT

The integration of a cache memory into a connectionist lan-

guage model is proposed in this paper. The model captures

long term dependencies of both words and concepts and is

particularly useful for Spoken Language Understanding tasks.

Experiments conducted on a human-machine telephone dia-

log corpus are reported, and an increase in performance is ob-

served when features of previous turns are taken into account

for predicting the concepts expressed in a user turn. In terms

of Concept Error Rate we obtained a statistically significant

improvement of 3.2 points over our baseline (10% relative

improvement) on the French Media corpus.

1. INTRODUCTION

The purpose of Language Models (LMs) in Automatic Speech

Recognition (ASR) systems is to compute the probability of a

word w given its history h, which is defined as the sequence

of words uttered before w. If the process of ASR decod-

ing is performed on a human/human conversation or a hu-

man/computer dialog, the history of a word may be very long

and the estimation of the probability P (w|h) may be very dif-

ficult due to the immense variety of possible histories. A pop-

ular solution is to approximate histories by the n − 1 words

preceding w in word n-grams. Even in this case, the estima-

tion accuracy is affected by data sparseness. Motivated by the

above considerations, a solution is proposed based on contin-

uous space LMs and effective approximations of word histo-

ries made of summaries composed of a limited number of se-

mantic constituents useful for word prediction. History sum-

maries are made of discourse features. In [1] intentions and

preferentially retained information are considered to model

the attentional state of a conversation. A cache model is pro-

posed for temporarily storing this information. Inspired by

these ideas and by a previous cache model presented in [2]

for LM adaptation, a new cache model is proposed in this pa-

per. Stored in the cache are semantic components used by

the dialog manager for performing progressive composition

of concepts into frame structures. A continuous space LM

is proposed to estimate word probabilities based on n-gram

and concept histories. It is expected to perform better pre-

dictions of words expressing concepts to be composed with

the already hypothesized ones even if errors in the history hy-

potheses may have a negative influence.

The paper introduces this new LM adaptation model and

evaluates its performance on a Spoken Language Understand-

ing (SLU) task. It is organized as follows. Section 2 summa-

rizes previous work on LM adaptation related to the proposed

approach. Section 3 introduces a new cache Neural Network

LM (cacheNNLM). Section 4 reports details of experimental

results of cacheNNLMs.

2. RELATED WORK

In order to take into account contexts longer than n-grams

for representing contextual dependencies for word expecta-

tion, a cache memory model was proposed in [2]. Along this

line, trigger models were introduced with triggers stored into

a cache to predict triggered words [3]. Expectations based on

the cache are combined with probabilities computed by com-

bining general static n-grams.

The modifications of general static LM probabilities with

features from the message to be analyzed were often referred

to as LM adaptation. Important dimensions of LM adaptation

are the type of context taken into account, how to obtain the

adaptation data and how to use it to update LM probabilities.

An additional concern in LM design and adaptation is the

sparseness of available data used for model parameter esti-

mation. A possible solution to this problem is to perform

history clusters after projecting vectors of word probabilities

into a reduced space [4]. Neural Network LMs (NNLM) were

also proposed to overcome the data sparseness problem. The

NNLM [5, 6, 7] was introduced for exploiting the inherently

generalization and discriminative power of a continuous vec-

tor space representation of word sequences. NNLMs are es-

sentially approximators of functions that predict words based

on histories. Words are coded in an internal network layer.

An LM adaptation solution was proposed for NNLM by in-

troducing an additional hidden layer in the network and using

adaptation data to modify the weights of this layer [8].
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3. THE CACHE MEMORY MODEL

An evolution of the cache memory model introduced in [2] is

now proposed to perform LM adaptation using the probability

of observing a linguistic event by storing in a cache memory

features of the past history of the event. In most ASR applica-

tions, the considered events as well as their histories are words

or word classes. Unlike for other models, as, for example, the

one proposed in [4], the history features are not only words

or sets of them, but also concepts expressed in the preced-

ing dialog turns. The cache memory represents, in this way,

fragments of knowledge about user intentions. Rather than

modelling the attentional state as proposed in [1], the cache

memory represents the history of user intentions that are also

involved in the decision process of the dialog manager.

Let VW be the word vocabulary (from the user turns) and

let VC the vocabulary of concept tags {C1, . . . , C|VC |} de-

scribing knowledge chunks in a given application domain.

Let σm indicate the sequence of words, called support,
expressing a concept Cm in a sentence. As the corpus is

annotated in terms of concepts and their supports, it is possi-

ble to create (concept, word) pairs by associating a concept

tag to each word of its support, considering the sequence

(c, w)i,1, . . . , (c, w)i,k, . . . , (c, w)i,N(i) of instances from

VC × VW , expressed in the i-th dialog turn. It will be useful

to call such a pair of a concept tag expressed in the i-th dialog

turn and its associated word, (c, w)i,k, as the token ti,k.

The problem investigated in this paper consists on mod-

elling the influence of history tokens ti−i′,j in the prediction

of tokens in the i-th dialog turn. For simplicity, we shall omit

the dialog turn when referring to the current one, so that tk
will be used instead of ti,k. The model has to compute, for ev-

ery tk, the probability P (tk|hk, h
i−1
1 ), where hk contains fea-

tures of the tokens preceding tk in the i-th turn, while hi−1
1 is

a summary of the context made of the words and/or concepts

expressed by the user and the machine in turns preceding the

i-th turn. While the features in hk are n-grams of tokens,

hi−1
1 is a representation of the context proposed here for the

first time. Semantic expectations depending on hi−1
1 and con-

straints represented by hk are used to estimate the prediction

probability P (tk|hk, h
i−1
1 ) computed using a cache memory

model from the content of which input values are computed

and applied at the input nodes of a neural network.

In practice, even if the annotated corpus is fairly large,

there are not enough examples of all possible histories for

estimating P (tk|hk, h
i−1
1 ). Previous work on language mod-

elling has shown that using NNLMs as proposed in [5, 6, 7]

for computing P (w|hk) is an excellent if not the best ap-

proach. For this reason, a LM adaptation is now proposed

that integrates the cache model with the NNLM. The result-

ing model for computing P (tk|hk, h
i−1
1 ) for this task will be

called cacheNNLM.

NNLMs can process different types of input features that

can be encoded with continuous values. In this work, input
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Fig. 1. Scheme of a cacheNNLM. In this example, the cache

memory hi−1
1 of the cacheNNLM-D system, using 0.95 as ex-

ponential decay, would be: [marseille: 1.00, a: 0.95, reserver:

0.952, souhaitez: 0.953, vou: 0.954, localisation-ville: 0.955,

hotel: 0.957, un: 0.958, ville: 0.9512, . . . ]. Each pair rep-

resents an input neuron in the cache memory and its value.

neurons are fed by tokens of the current dialog turn as well as

cache values computed from words and/or concepts expressed

in previous turns. The possibility of using continuous values

at the input makes it possible to code not only the presence of

an item at the cache but also when it has been hypothesized

relating the current turn. The value of a cache input neuron

follows an exponential decay and is computed as ab where

a < 1 (a = 0.95 in this work) and b is the number of words

to the last word or concept from previous turns. In this way,

the maximum activation value is 1 and the cache activation

remains the same for all tokens in the current turn. If several

words or concepts activate the same neuron, only the last one

is considered. The cache input layer is connected to the hid-

den layer as shown in Figure 1. The cacheNNLM uses both

the n − 1 n-gram history of tokens together with the cache

activation to estimate the probability of the next token. Each

token is coded with a 1-out-of-N value which is mapped to a

lower dimension representation using a projection layer. All

projection layer weights are shared (see Figure 1). In this way,

both the LM and the token projections are trained together.

4. EXPERIMENTAL FRAMEWORK AND RESULTS

The proposed architecture was evaluated using the French

Media corpus [9]. It was recorded using a Wizard of Oz

tourist information system simulating a phone server. 1,250

dialogs were recorded, from 250 different speakers. They are

manually transcribed and annotated at the concept level and

are available through ELDA. The corpus is split into three
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Table 1. WER on the Media corpus with different LMs.
2-grams 3-grams 4-grams

LM Dev. Test Dev. Test Dev. Test
Word n-gram 35.2 34.7 31.8 31.4 31.5 31.3

Word NNLM 31.6 31.1 30.7 30.6 30.4 30.1

subsets: a training set, a development set, and a test set con-

taining, respectively, 12,811, 1,241, 3,468 sentences, 87,297,

9,996, 24,598 words, and 42,251, 4,652, 11,790 concept in-

stances. The word vocabulary of the user turns VW contains

2,007 words and the concept vocabulary VC contains 72 dif-

ferent concepts. The set of observed tokens, (c, w) pairs, oc-

curring in the training set is a small subset of all possible pairs

from VC × VW and it is composed of Vt = 4,207 tokens. To-

kens appearing only once in the training set were removed,

leading to a vocabulary size V ′
t = 2,559. These tokens were

used for training the connectionist n-gram model.

The acoustic data have been parametrized using a win-

dow size of 30ms and 12 mel-scaled filter bands [10]. Acous-

tic feature vectors have been mean subtracted and divided by

the standard deviation. The ASR system uses the same lex-

icon and phonetic transcriptions of the Speeral system [11]

and left-to-right 3-state without skips context independent hy-

brid HMM/ANN acoustic models [12] trained with an EM al-

gorithm based on Viterbi alignment. HMM state emissions

are computed by a MultiLayer Perceptron (MLP) receiving

a frame together with a left and a right context of 8 frames.

The MLP contains two hidden layers of 400 neurons each

one using the logistic activation function, and 105 outputs (3

states per phone) using softmax, and trained with stochastic

backpropagation (sBP) using replacement. MLP training was

performed using the Media training set of about 11 hours of

user turns recorded at 8Khz. This corpus has been augmented

with 39 hours of radio recordings of telephone conversations

from the ESTER-II corpus [13].

Several word-based LMs, trained with the Media train-

ing set composed by the vocabulary of 2,007 words, were

tested for the ASR task. Count-based n-gram models, with

n =2, 3, and 4, were trained with SRI toolkit [14] using

modified Kneser-Ney discount method. NNLMs for 2, 3, and

4-grams were also trained. The 4-gram NNLM system, which

is a combination of four NNLMs and the count-based 4-gram

model, provided the lowest perplexity and the WER results

shown in Table 1.

The cacheNNLM is a NNLM to estimate the probabil-

ity of token tk at the i-th user turn using the (n − 1) pre-

vious tokens tk−1
k−n+1 and additional inputs modelling hi−1

1 .

An additional neuron is added to each input representation of

a token and to the network output to take into account the

probability mass of all singletons which were removed. As a

consequence, this output is divided by the total number of sin-

gletons. The size of the cache input remains small since only

the most recent appearance of each concept or word appear-

ing in the history is stored into the cache memory, following

an exponential decay. Different models suitable to be used in

a SLU system were tested. They are now briefly described:

• For comparison purposes, two baseline models to estimate

P (tk|hk) were tested. The input of the models is made of

previous tokens hk = tk−1
k−n+1. The baseline models are:

– baseline-a: a modified Kneser-Ney discount n-gram of

tokens with the whole set of tokens.

– baseline-b: a NNLM of non-singleton tokens linearly

combined with baseline-a.

• Different cacheNNLMs extend baseline-b, to estimate

P (tk|hk, h
i−1
1 ). They have the same inputs and outputs as

baseline-b, hk, plus a cache history hi−1
1 composed of:

– cacheNNLM-A: concepts from previous user turns.

– cacheNNLM-B: words from previous user turns.

– cacheNNLM-C: concepts and words from previous user

turns.

– cacheNNLM-D: the same as cacheNNLM-C plus

words from previous machine turns.

The MLPs have been trained using sBP with a weight de-

cay regularization term, and the cross entropy error function.

The projection layer has a linear activation function, hidden

layer use tanh, and the softmax function is used at the output

layer. In order to ensure optimal performance, every NNLM

and every cacheNNLM system is a combination of four neu-

ral networks with respectively 128, 160, 192, 224 neurons in

Pi and 200 neurons in the hidden layer.

4.1. Experimental results on the generation of concept
hypotheses and their supports

Using the LMs considered in the previous section, it is pos-

sible to obtain the maximum likelihood sequence of tokens.

In order to evaluate semantic interpretation results, it is nec-

essary to convert each token made of a (concept, word) pair

into a concept and the word sequence expressing it called sup-

port. For this purpose a Conditional Random Field (CRF)

model [15] was trained with the training set using the CRF++

toolkit. Results obtained with the architecture scheme shown

in Figure 2 are reported in Table 2 in terms of concept at-

tribute error rate (CER) on concept tags, It is worth noticing

that the CRFs used in this system are much simpler, using just

input unigrams and bigrams, than those proposed by [16].

The improvements introduced by the cacheNNLM are sta-

tistically significant because the 95% confidence interval is

1.3 for the test set. The fact that ASR decoding generates

pairs of (concept,word) hypotheses suggests to investigate in

the future decoding schemes that impose combined syntac-

tic and semantic constraints. This would inspire new more

effective CRF functions that could be applied to graphs of

(concept,word) hypotheses.
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Fig. 2. Scheme of the whole system.

Table 2. Errors of concepts on the Media Development and

Test sets with different LMs and word n-grams (speech input,

using CRFs for concept chunking).

2-grams 3-grams 4-grams
Model Dev. Test Dev. Test Dev. Test

baseline-a 33.6 30.1 32.9 29.3 33.5 29.3

baseline-b 33.1 28.3 30.7 27.4 30.2 28.1

cacheNNLM-A 31.7 28.2 29.7 27.0 29.7 27.0

cacheNNLM-B 30.5 27.3 29.7 27.0 30.0 26.1
cacheNNLM-C 32.2 28.3 30.5 27.0 30.8 27.4

cacheNNLM-D 31.2 28.2 29.9 26.2 30.3 27.1

5. CONCLUSIONS AND FUTURE WORK

The use of a cache memory model is proposed in a connec-

tionist LM which captures long term dependencies of both

words and concepts. Experiments conducted on a SLU task

for a spoken dialog system have shown a significant CER re-

duction using a rather simple model. An effective SLU mod-

ule should impose semantic coherence in searching a graph

of (concept,word) hypotheses, while the results reported here

refer only to the 1-best hypothesis obtained with a fairly sim-

ple acoustic model. An oracle error rate for the 1-best was

also computed as the percentage of concepts appearing in the

manual annotation but not in the sequence obtained with dif-

ferent LMs. Oracle values of 15.9% for the best n-gram base-

line and 14.2% for the best cacheNNLM suggests that there

is plenty of room for improvement. Future work will attempt

to improve the HMM/ANN acoustic models and to conceive

a new SLU component acting on word-concept pairs in con-

fusion networks.
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