
CLUSTERING BEHAVIORS OF SPOKEN DIALOGUE SYSTEMS USERS

Senthilkumar Chandramohan 1,3, Matthieu Geist 1, Fabrice Lefèvre 3, Olivier Pietquin 1,2

1 SUPELEC Metz Campus, IMS Research Group, France
2 UMI 2958 (CNRS - GeorgiaTech), France

3 Université d’Avignon et des Pays de Vaucluse, LIA-CERI, France

ABSTRACT

Spoken Dialogue Systems (SDS) are natural language interfaces for
human-computer interaction. User adaptive dialogue management
strategies are essential to sustain the naturalness of interaction. In
recent years data-driven methods for dialogue optimization have
evolved to be a state of art approach. However these methods need
vast amounts of corpora for dialogue optimization. In order to cope
with the data requirement of these methods, but also to evaluate
the dialogue strategies, user simulations are built. Dialogue cor-
pora used to build user simulation are often not annotated in user’s
perspective and thus can only simulate some generic user behavior,
perhaps not representative of any user. This paper aims at cluster-
ing dialogue corpora into various groups based on user behaviors
observed in the form of full dialogues.

1. INTRODUCTION

Spoken Dialogue Systems (SDS) are complex systems requiring the
development of several speech and language processing modules.
Especially, the dialogue management (DM) module is in charge of
deciding what to do in a given context. Developing such a module
has been casted into the Reinforcement Learning (RL) paradigm [1]
since the end of the 90’s [2, 3]. Dialogue management is indeed
a sequential decision problem which can therefore be framed as a
Markov Decision Process (MDP) and solved using reinforcement
learning. Depending on the considered algorithm, the DM can be
trained either directly from the dialogue corpora [4] or more gen-
erally using some user simulator [5, 6, 7], itself built using the di-
alogue corpora. Such user simulators are mandatory for some data
expensive RL algorithms. User simulation is also widely used for
assessing dialogue systems [8].

Most often, user simulation are statistical machines trained on
data of weakly annotated dialogues [9, 10, 11]. A dialogue corpora
contains a set of dialogues from different users, which can act very
differently. For example, consider a user accustomed to such system
(and who somehow shortcut the DM to get quickly the required in-
formation) compared to a newcomer who shall wait for machine’s
instruction before proceeding. In other words, the distribution of
users behaviors is intrinsically multimodal. However, dialogue cor-
pora are not annotated to reflect this basic fact and, often, a single
user simulator is trained on the global set of data. Therefore, training
DM on user simulators (or directly from dialogue corpora) resumes
to train against non-representative users.

We claim that training DMs on different types of users instead
of on a generic user would lead to more natural and more efficient

This research was partly funded by the EU FP7 project ILHAIRE (grant
no 270780) and the Region Lorraine (France)

interactions. However, annotating dialogue corpora to reflect this is
cumbersome. Thus, one should cluster automatically users in such
corpora. This paper proposes an approach to automatically clus-
ter corpora according to user behavior types without prior model of
this behavior. However, clustering user behaviors is far from being
straightforward. The main difficulty relies in the fact that dialogues
are sequences of interactions resulting in changes in the dialogue
context. These sequences can be of different lengths, even if gener-
ated by a same user, which makes comparisons required for cluster-
ing quite tricky. In [12], the authors are also addressing the clustering
problem. Yet, to avoid the problem of the length difference, a spe-
cific behavior is analyzed (clarification strategies) and a restricted
context of fixed length is considered.

In [13], it is proposed to express user behaviors as a sequen-
tial decision making problem and to build user simulators based on
inverse reinforcement learning [14]. Taking a similar route we repre-
sent user behaviors as a single vector and find a representative space
to perform clustering.

2. CLUSTERING BEHAVIORS

In this section, we recall the notion of MDP and explain how a user
can be modeled as an MDP, before explaining how this can be used
to quantify users behaviors and perform subsequent clustering.

2.1. Markov Decision Process

Markov Decision Processes are a common framework for formaliz-
ing sequential decision problems involving an agent interacting with
a dynamic system. An MDP is defined as a tuple {S,A, P,R, γ}
with S the state space, A the action space, P : S × A → P(S)
as set of Markovian transition probabilities, R : S → R the reward
function and γ a discount factor weighting long-term rewards. A
policy π : S → P(A) defines how choosing action for each state.
At each timestep t, the system is in a state st. The agent choose an
action at according to a policy π(.|st) and the system steps stochas-
tically to st+1 according to p(.|st, at). It receives a reward rt, which
is a local hint on the quality of the control. The quality of a policy
π is quantified by a so-called value function, defined as the expected
cumulative reward starting in a state s and following a policy π :

V π(s) = E[
∞∑

t=0

γtrt|s0 = s, π]. (1)

The optimal policy π∗ is the one for which the value function is
maximal for every state: V ∗(s) ≥ V π(s), ∀s, π. The behavior of
an agent, that is how it acts in each situation, is thus specified by its
policy (and indirectly by the value function).

4981978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2.2. Modeling users with MDP

A user can be considered as a decision maker optimizing some un-
known reward function and thus can be modeled thanks to an MDP.
We consider here a generic slot filling task. The state space con-
sists of the last dialogue manager act as well as values of different
slots (if they have been provided by the user and/or confirmed by the
DM). An action consists in greeting or closing the dialogue, as well
as providing one or more slots or confirming a slot. Transition prob-
abilities depend on the considered DM, it is not necessary to define
them formally (as we will work on a simulation-based model-free
basis). The reward function encodes the preferences of the user, it
is also unknown. One can learn this reward function to build a user
simulator [13] (see also this reference for more details on the state
and action spaces) using inverse reinforcement learning [14]. Yet, it
might not be necessary as shown hereafter.

2.3. Quantizing behaviors

Thanks to this MDP approach, each user is actually a policy. The
initial state s0 is always the same: there is no system act and all
slots are empty. Let’s assume that we have K different users, and
therefore K different policies πk. We assume that all users in a clus-
ter try to optimize the same (unknown) reward function R. To each
of these policies is associated the value function for the initial state
vk = V πk (s0). This quantity could be used to cluster user behav-
iors (quantified by policies), as it differs for each policy. However,
this is not practical, as the reward function is unknown.

To remove this reward dependency, we assume that the reward
function can be expressed as a linear combination of p predefined
basis functions φ(s) = (φ1(s), . . . , φp(s))

T ∈ R
p, the set of as-

sociated weights being concatenated in the parameter vector θ =
(θ1, . . . , θp)

T :

R(s) =
∑

i

θiφi(s) = θTφ(s). (2)

The value vk can be rewritten as follows:

vk = E[
∞∑

t=0

γtrt|s0, πk] (3)

= E[

∞∑

t=0

γtθTφ(st)|s0, πk] (4)

= θTμπk with μπk = E[
∞∑

t=0

γtφ(st)|s0, πk]. (5)

The quantity μπk , called feature expectation, does not depend on
the reward function, only on the policy πk. We propose to use this
measure for clustering user behaviors.

Let’s assume that the dialogue corpora contains N dialogues,
each one of length Hn. For 1 ≤ n ≤ N , we can compute vectors

δn =

Hn∑

t=0

γtφ(st). (6)

Each vector δn therefore represents succinctly the trajectory (dia-
logue) information. Moreover, δn is an unbiased estimate of μπk for
some user (represented by the policy πk). We assume that the intra-
variability of one user (due to randomness of transitions) is lower
than the inter-variability between users. Finally, one can use any
vector quantization algorithm to cluster behaviors (by applying the
clustering algorithms to vectors δn).

3. EXPERIMENTS

In this section user behavior clustering in the space spanned by δ is
outlined. Following which a simple experiment using hand-crafted
user simulation for a 3-slot restaurant information dialogue system is
proposed to determine the effectiveness of clustering user behavior
based on δ. Finally clustering of user behavior using data generated
by actual human users while interacting with a 12-slot restaurant
information dialogue system is outlined.

3.1. User behavior clustering using discounted feature vectors

As discussed in Section 2.3 discounted feature vectors of a trajec-
tory provides a succinct representation of user behavior. Since the
discounted feature vector in itself is a vector, it is a point in some
high dimensional space F . Thus a direct way to cluster user be-
haviors is to perform clustering on this space F . In this paper, we
consider the simple K-means algorithm for clustering the discounted
feature vectors. It is important to note that this method is different
than comparing directly any two trajectories since they may not be
of equal length and the order of visited states and performed actions
may vary from one trajectory to another.

3.2. Clustering user behavior of 3-slot dialogue problem

In order to explore the possibility of clustering, a simple experiment
is proposed. The task studied here is a form-filling task about restau-
rant information, similar to the one studied in [15]. The primary task
of the dialogue system is to give information about restaurants based
on user preferences. The dialogue problem is composed of 3 slots:
location, cuisine and price-range of the restaurant. The hand-crafted
dialogue policy tries to obtain the values for these slots while inter-
acting with the user or user simulator.

The user behavior is casted as an MDP (User-MDP) similar to
that of dialogue management. The state of the MDP is represented
by the Information State paradigm [16]. It is important to note that
the state here is a summary of the dialogue course from a user’s per-
spective. Apart from encoding the exchange of information between
the user and the dialogue manager, the user state also includes the
most recent system action. The state representation of User-MDP:
{System-Act} {Slot1} {Slot2} {Slot3}, where the system-act field
takes values in 0:13 (which deals with filling and confirming the 3
slots). Slot1, Slot2, Slot3 fields take values in 0:2; i.e. (0) the slot is
empty (never provided by the user), (1) the slot has been provided by
the user, (2) the slot is confirmed. The action space of User-MDP in-
cludes the following 10 user acts: remain silent (Silent), provide-all-
values (AllSlots), provide-one-value (OneSlot: 3 actions), confirm
slot value (Confirm: 3 actions), negate slot value (Negate: 3 actions)
and hangup (CloseDialogue). The discount factor of the User-MDP
is set to 0.95. Two simple hand-crafted user behaviors for User-MDP
are specified as shown in Table 1. User behavior 1 outlines a proac-
tive or expert user who prefers to furnish all the required informa-
tion as soon as the system greets. Whereas user behavior 2 outlines
a novice user who prefers to furnish only the information requested
by the system. The user behaviors are purposely made simple so that
the clustering results can be visually interpreted.

3.3. Clustering user behavior of 12-slot dialogue problem

A second experiment aims at answering the following concerns: (i)
can the proposed method for user behavior clustering work on data
collected from human users? (ii) can the method scale for large state
space real world problem? (iii) are the resulting clusters distinct

4982

Table 1. Hand-crafted users behaviors

SystemAct UserActs 1 (probab.) UserActs 2 (probab.)
Greet Silent (0.1) AllSlots (0.9) Silent (0.9) AllSlots (0.1)

AskSlot OneSlot (0.95) AllSlots (0.05) OneSlot (0.95) AllSlots (0.05)
Explicit-Conf Confirm (1.0) Confirm (1.0)
Implicit-Conf OneSlot (0.9) Negate (0.1) OneSlot (0.9) Negate (0.1)
CloseDialogue Silent (1.0) Silent (1.0)

from each other? For this experiment a 12-slot restaurant informa-
tion dialogue system is considered (same as in [11]). The data used
for clustering is generated from interaction between a hand-crafted
dialogue policy and human users. This problem is a large real world
dialogue problem similar to the 3-slot problem, but also includes
several other user preferences such as type of drinks served, type of
music played, number of stars etc.

The task of user interaction is again casted as an MDP. The
state of the User-MDP is: {System-Act} {Preference} {Goal}
{Annoyance} {Correctness} {ChangeIntention}, where system-act
can takes values between 0 and 10, preference and goal fields can
take values from 0 to 2 (0 means no information is furnished or
obtained, 1 meaning partial exchange and 2 means all constraints
have been informed or all requested information have been obtained
from the system), while annoyance is a boolean value which indi-
cates whether the user is annoyed or not, correctness field indicates
whether the information presented by the system is what user ac-
tually conveyed and changeIntention field indicates whether the
system can find results for the user constraints or not.

4. RESULTS AND DISCUSSION

The primary goal of the 3-slot experiment (see Section 3.2) is to de-
termine the possibility of user behavior clustering using discounted
feature vectors. The state-action space is spanned by 3780 features.
A set of 3000 dialogue trajectories are generated by randomly choos-
ing one of the two user behaviors. Of the 3000 dialogue trajectories
1544 belongs to the expert user and 1456 belongs to the novice users.
Discounted feature vector corresponding to each of these 3000 tra-
jectories are computed. K-means method with K set to 2 (since it is
known that only two user behaviors are simulated) is used for clus-
tering the discounted feature vectors. Euclidean distance measure is
used to cluster the user behaviors for this experiment.

Upon clustering it is observed that the two clusters have 1549
and 1451 elements. The frequencies of user action selection for the
hand-crafted user behaviors as well as for the two clustered behav-
iors are shown in Figure 1. It can be observed from the histogram
that the expert user behavior correlates well with clustered user be-
havior 1 and same is the case with the novice user and clustered user
behavior 2. Since the clustered user behaviors correlates with the
respective hand-crafted user behaviors we can claim that clustering
user behavior using their discounted feature vector is a viable option.

Our second experiment was conducted on a large real world
problem (12 slots) using data collected from human users. A total
of 480 dialogue trajectories (weakly annotated from user perspec-
tive) generated from interaction between human users and a hand-
crafted dialogue manager. The associated discounted feature vectors
of all these trajectories are computed. Assuming that these vectors
i.e. these points in the feature space F are linearly separable K-
means method is applied for clustering.

Since the data is generated by human users, the number of dif-
ferent types of user behaviors and hence the number of clusters is

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

silent provide-all provide-one negate confirm hangup

A
ve

ra
ge

 U
se

rA
ct

 p
er

 E
pi

so
de

HC-User-1
HC-User-2

Cluster-1
Cluster-2

Fig. 1. Frequency of user actions per episode for the 3-slot problem

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

A
vg

. d
is

to
rt

io
n

an
d

A
vg

. C
os

in
e

Si
m

ul
ar

ity

Number of clusters

Avg. distortion Vs No. of clusters
Avg. cosine simularity Vs No. of clusters

Fig. 2. Cumulative distortion with varying number of clusters

not known beforehand. In machine learning one way of choosing
the number of clusters, i.e. the value of K, is to observe the average
cumulative distortion with varying number of clusters. In addition to
using average distortion, a measure of intra-cluster cosine similarity
(i.e. normalized dot product between two discounted feature vectors)
is also used to decide the number of clusters: cos(A,B) = A.B

‖A‖.‖B‖ .

From Figure 2, where the average distorsion and cosine simu-
larity among clusters is computed for several values of K, it can be
observed that for K > 4, the distortion as well as the intra-cluster
cohesion do not improve significantly. Thus for clustering the data
collected from human users K is set to 4. As it can be observed
from the User-MDP state the data used for clustering is symbolic,
hence K-means clustering is performed using cosine similarity mea-
sure rather than Euclidean distance. The 480 trajectories are grouped
as 4 clusters each with 35, 124, 114 and 207 elements.

The primary problem while dealing with human user data un-
like the simple simulated user behavior (as for the 3-slot problem) is
that the behaviors grouped under various clusters may not be easily
differentiated. Thus we propose to use Kullback-Leibler (KL) diver-
gence measure [17] to ensure the correctness of the clustering. The
KL divergence measures the dissimilarity between two probability
distributions. The KL divergence between two distributions P and
Q is defined by: DKL(P ||Q) =

∑M
i=1 pilog(

pi
qi
), where pi (resp.

qi) is the frequency of dialogue act ai in the histogram of distribu-
tion P (resp. Q). KL divergence close to 0 corresponds to identical

4983

Table 2. Inter-cluster Kullback-Leibler divergence
Behavior comparison KL-Divergence

Cluster-1 vs Cluster-2 2.52

Cluster-1 vs Cluster-3 2.51

Cluster-1 vs Cluster-4 1.99

Table 3. Intra-cluster cosine similarity
Behavior-Type Cosine similarity

Cluster-1 0.68

Cluster-2 0.60

Cluster-3 0.55

Cluster-4 0.70

behavior and larger non zero values correspond to significant diver-
gence from each other. Based on this we make an assumption: if
the behavior of the users in two different clusters are truly distinct
then there should be a noticeable divergence between the user acts
distributions. Thus KL divergence is computed using the frequency
of user action selection across all the clusters. As it can be observed
from Table 2 the clusters formed and hence the user behaviors have
significant KL divergence. Thus it tends to confirm that every clus-
ter indeed represents a specific user behavior which is different from
other clusters.

It is also important to establish that there is good cohesion
among the elements within a cluster, i.e. to show that intra-cluster
cohesion is non negligeable. In order to measure the intra-cluster co-
hesion we used cosine similarity between the centroid of the cluster
and the elements within the cluster. Since discounted feature vector
is indeed a vector, cosine similarity is an appropriate measure to
compute the intra-cluster similarity. The value for cosine similarity
while comparing 2 elements can range form -1 (meaning totally
opposite elements), 0 (meaning independent elements),1 (meaning
identical elements). Cosine similarity is computed for each cluster
by measuring the similarity between the cluster’s centroid and its
own elements. Without clustering, the cosine similarity of the com-
plete set of data to the average vector is 0.4. Table 3 shows that
the cosine similarity of all 4 clusters have values closer to 1 (which
means most vector within the cluster point to the same direction).
This reveals strong intra-cluster cohesion or similarity between
discounted feature vectors/user behaviors.

5. CONCLUSION

Identifying and/or simulating the different user behaviors is a cru-
cial task for learning as well as evaluating adaptive dialogue strate-
gies. However until now, compact means for representing user tra-
jectory/behavior such as discounted feature vector are not used in the
dialogue management domain. Representing the user behavior in the
form of discounted feature vector gives an opportunity to further ex-
plore schemes like automatic clustering of different user behaviors.
The experimental results for the 3-slot dialogue problem validated
the use of discounted feature vector for user clustering by grouping
the two hand-crafted trajectories appropriately. Experimental results
from the 12-slot dialogue problem showed that even human users
can be clustered and the resulting clusters can be shown distinct and
coherent.

With regard to future directions of work, once the user behaviors

are clustered it is possible to build user simulations which can sim-
ulate different types of users. Such efforts will yield more than one
user simulations with distinct behaviors and hence can be used for
(adaptive) dialogue policy optimization and evaluation. Another in-
teresting task to be explored is to find automatic measure to quantify
a specific user behavior. Currently we have clustered the behaviors,
but it would be interesting to see in what way one cluster is distinct
from others. Understanding the distinctive features of clusters can
help generating data missing in the dialogue corpora. Also, in this
paper, we have used the K-means algorithm which is sensible to the
fact that some clusters may contain a low amount of data. Other vec-
tor quantization algorithms are less sensible to non-uniform distribu-
tions of the data among clusters such as the neural gas algorithm.

6. REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, The
MIT Press, 3rd edition, March 1998.

[2] E. Levin and R. Pieraccini, “Using markov decision process for learn-
ing dialogue strategies,” in Proc. ICASSP’98, Seattle (USA), 1998.

[3] O. Lemon and O. Pietquin, “Machine learning for spoken dialogue
systems,” in Proc. of InterSpeech’07, Belgium, 2007.

[4] O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet,
“Sample-Efficient Batch Reinforcement Learning for Dialogue Man-
agement Optimization,” ACM Transactions on Speech and Language
Processing, vol. 7, no. 3, pp. 7:1–7:21, May 2011.

[5] O. Pietquin and T. Dutoit, “A probabilistic framework for dialog sim-
ulation and optimal strategy learning,” IEEE Transactions on Audio,
Speech & Language Processing, 14(2): 589-599, 2006.

[6] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young.,
“Agenda-based User Simulation for Bootstrapping a POMDP Dialogue
System,” in Proc. of HLT/NAACL, 2007.

[7] K. Georgila, J. Henderson, and O. Lemon, “Learning User Simulations
for Information State Update Dialogue Systems,” in Eurospeech, 2005.

[8] W. Eckert, E. Levin, and R. Pieraccini, “User Modeling for Spoken
Dialogue System Evaluation,” in Proc. of ASRU, 1997, pp. 80–87.

[9] O. Pietquin, “Consistent goal-directed user model for realistic man-
machine task-oriented spoken dialogue simulation,” in Proc. of
ICME’06, Toronto (Canada), July 2006, pp. 425–428.

[10] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A survey
of statistical user simulation techniques for reinforcement-learning of
dialogue management strategies,” Knowledge Engineering Review, vol.
21(2), pp. 97–126, 2006.

[11] S. Keizer, M. Gasic, F. Jurcicek, F. Mairesse, B. Thomson, K. Yu, and
S. Young, “Parameter estimation for agenda-based user simulation,” in
Proc. of SigDial 2010, 2010, pp. 116–123.

[12] V. Rieser and O. Lemon, “Cluster-based User Simulations for Learning
Dialogue Strategies,” in Proc. of Interspeech/ICSLP 2006, 2006.

[13] S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin, “User Simu-
lation in Dialogue Systems using Inverse Reinforcement Learning,” in
Proc. of Interspeech 2011, Florence (Italy), 2011.

[14] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. of ICML, 2004.

[15] O. Lemon, K. Georgila, J. Henderson, and M. Stuttle, “An ISU di-
alogue system exhibiting reinforcement learning of dialogue policies:
generic slot-filling in the TALK in-car system,” in Proc. of EACL’06,
Morristown, NJ, USA, 2006.

[16] S. Larsson and D. Traum, “Information state and dialogue manage-
ment in the TRINDI dialogue move engine toolkit,” Natural Language
Engineering, vol. 6, pp 323–340, 2000.

[17] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

4984

