
SEAMLESS ERROR CORRECTION INTERFACE FOR VOICE WORD PROCESSOR 
 Junhwi Choi , Kyungduk Kim, Sungjin Lee,  

Seokhwan Kim, Donghyeon Lee, Injae Lee, Gary Geunbae Lee 
 

Department of  Computer Science and Engineering,  
Pohang University of Science and Technology, Pohang,Gyungbuk,Korea 

{chasunee, getta, junion, megaup, semko, lij1984, gblee}@postech.ac.kr 
 

ABSTRACT 
 
In this paper, we propose an error correction interface for a voice 
word processor. This correction interface includes user intention 
understanding and automatic error region detection. For accurate 
correction, we include a confirmation process that includes an 
error region control command and a re-uttering command. We 
evaluate the performance of the user intention understanding first, 
and we evaluate the effectiveness of our interface compare to a 
general two-step error correction interface. 

Index Terms—  Error Correction, Voice Word Processor 
 

1. INTRODUCTION 
 
A voice word processor is an automatic speech recognition (ASR) 
system that translates wave signals into text. Even when the ASR 
system has a low error rate, the recognized results frequently 
include error words. To perfect a document, an error correction 
process is required. The correction process can be performed by 
selecting an erroneous portion of the text using a keyboard, a 
mouse, or other devices and speaking replacement text. However, 
in some usage scenarios, error correction using only voice 
commands is required. A handicapped person who cannot use 
either arm may want the error correction to use only voice. In 
addition, users initially tend to try to correct misrecognized results 
using their own speech [1] and often remain in the same speech 
modality even when faced with repeated recognition errors [2]. 
Therefore, error correction using only voice commands may also 
be convenient for non-handicapped users. 

In general, voice-only error correction is a two-step process. 
In the first step, the users speak a portion of the recognized text to 
select a target position to correct. Next, the users speak a 
replacement text. These two steps can perform one correction. 
However, as McNair and Waibel [3] suggest, the correction 
process can instead be performed in a single step. In one-step 
correction, users speak only their replacement text, and the system 
automatically recognizes it correctly and finds the error region to 
replace. 

In this paper, we propose a seamless error correction interface 
for a voice word processor. Seamless error correction is processed 
like one-step error correction, without any explicit command to 
enter the correction mode. Our interface automatically understands 
the purpose of the utterance whether the intention is to type a new 
sentence or to correct a misrecognized sentence. Then, the system 
detects an error region and corrects it. To complement the 
understanding of user intention, our interface provides a 
confirmation process. To demonstrate the effectiveness of our 

interface, we evaluate it by comparison to a general two-step 
process. 

 
2. RELATED WORK 

 
For accurate and seamless error correction, the system should 
achieve three functionalities: First, the replacement utterance 
should be recognized accurately. The replacement text that users 
speak is not a full sentence, but a sub-sentence. Because the 
language models for ASR are usually adapted to full sentences, the 
replacement utterance may not be correctly recognized. Therefore, 
an alternative language model is required. For this task, Vertanen 
and Kristensson [4] developed a flexible merge model that 
improved accuracy by combining information from the original 
recognition with information from the spoken correction. Second, 
the error region should be accurately identified. For the second 
task, Vertanen and Kristensson [5] presented three new models for 
automatically aligning the error region and the correction: a 1-best 
model, a word confusion network model, and a revision model. 
Third, the system should understand the purpose of the utterance. 
This third task deals with entering the correction mode. This 
functionality should precede the previous two tasks, as those tasks 
can be done after entering the correction mode. The previous two 
tasks do not address the third task because they assume that the 
correction mode has already been entered. This paper concentrates 
on the user intention understanding process. 

In commercial products, Nuance Dragon Naturally Speaking 
Solution [6] provides a voice interface for word processors. The 
interface follows a general two-step process for editing sentences 
and correcting errors. First, users utter continuously supported 
commands and the portion of already typed sentences that they 
intend to edit or correct. Then, the system assigns numbers to all of 
the detected regions. The users select a region to edit, and the 
command is applied to the region. In correction, there is one more 
process. The system recommends several candidates to replace. 
The user then select a recommendation or utter the right sentence. 
We will compare our seamless error correction with the general 
two-step error correction process. 
 

3. SEAMLESS ERROR CORRECTION 
 

Fig. 1 shows the word processing workflow using our interface. 
After the user utters the sentences to type or correct, our system 
detects analysis regions for accurate understanding of intention. In 
this process, the system finds the region of previously typed 
sentences most similar to the current utterance by the local 
alignment of the pronunciation sequences. Considering the 
characteristics of ASR, even a misrecognized sentence has a 
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similar pronunciation sequence to the sentence that the users really 
want to type. Furthermore, for purposes of correction, Vertanen 
and Kristensson [5] observed that, without explicit instruction, 
users tend to speak correctly recognized words surrounding an 
error region. The better the performance of the ASR system, the 
more similar the pronunciation sequences are. After that, user 
intention understanding proceeds, that is, the classification of 
correction or non-correction. When the intention of the current 
utterance is for correction, detected error region is replaced 
automatically. Otherwise, the current utterance is inserted at the 
end of the document. If the user finds some errors in the intention 
understanding process, the user can use confirmation process. 

 
Figure. 1. Workflow of Seamless Error Correction Interface 

 
In confirmation process, our interface provides four 

commands: error region window control command, re-uttering 
command, user intention changing command, and cancel command. 
Users can adjust error region with the error region window control 
command. If correction utterance is recognized with error but user 
intention is classified correctly, user can re-utter. The user 
intention changing command changes correction to non-correction. 

4. USER INTENTION UNDERSTANDING 

The key novel process in our interface is user intention 
understanding. User intention understanding can be accomplished 
by the observation of clear speech [7][8]. User utterances to ASR 
usually have the characteristics of clear speech, which is a 
speaking style adopted by a speaker aiming to increase the 
intelligibility for a listener. To make their speech more intelligible, 
users will make on-line adjustments; typically, they will speak 
slowly and loudly, and they will articulate in a more exaggerated 
manner [7][8]. Furthermore, the utterances for correction display 
these characteristics more conspicuously than the utterances for 
non-correction. 

We approach the task as a classification problem. We collect 
data from users, label the data with intentions, and extract and 
refine some of the data’s features. 

 
4.1. Wizard of OZ Data Collection 

To classify the user’s intention for the current utterance, we should 
collect user utterances and label them as correction or non-
correction. Therefore, we collected data using the Wizard of OZ 
(WOZ) method, behind which there is a human supervisor [9]. The 
supervisor imitates the operation of our seamless error correction 
interface. 

Each user was required to create a document using the system. 
The user was guided regarding how to correct misrecognized 

results in ASR. In this process, we did not impose any prosodic 
characteristics on the user, and thus, we could collect data with the 
natural prosody of speech for correction or non-correction. 

The supervisor prepared 4~5 misrecognized sentences from 
ASR for each task sentence. These prepared misrecognized 
sentences had actually occurred in ASR, as the presented situation 
should be a realistic representation of using the seamless error 
correction interface. The prepared sentences evenly included 
insertion errors, substitution errors, and deletion errors. Then, the 
supervisor listened to the user’s utterances from behind the system. 
The supervisor showed the user a misrecognized result on purpose 
to elicit a correction utterance from the user. Then, the supervisor 
replaced the error with the correct sentence. 

We recorded all utterances and labeled them with labels 
indicating whether the intention of the utterance was for correction 
or for non-correction. We collected 458 utterances (211 for non-
correction, 247 for correction) from 10 users. 

We refined the raw wave data to training data to use machine-
learning techniques. The training data consist of several instances. 
Each instance contains the features below and is labeled with the 
user’s intention by human annotators. However, some features vary 
with each user and utterance, so we constructed the training data 
with a focus on normalizing those features. 

 
4.2. Normalization of Prosodic Features 
 
First, to classify user intention, we focus on prosodic features. 
Usually, prosodic features are used to classify clear speech [7][8]. 

For all users and utterances, the prosodic features should be 
normalized to the ratio of the features of a target utterance to those 
of the current utterance, where the target utterance is the utterance 
of a previously typed sentence. 

Calculating the ratios of utterances of whole typed sentences 
to the current utterance may cause difficulty in understanding the 
intention. For more accurate modeling, we should calculate the 
ratio of a target sub-utterance, which users really want to replace, 
to the correction utterance. Therefore, the task of finding the target 
sub-utterance to be replaced should be performed first. Therefore, 
our interface begins by detecting the analysis region. Then, it 
calculates the ratio between the target and the current utterance. 
The equation is as follows: 

 

Cof(Feature)
Tof(Feature)

Ratio(Feature)  

 
where T is the most similar target sub-utterance and C is the 
current utterance. 

The ratio value represents the direction of change and also 
represents the degree of change from the features of the target sub-
utterance to the features of the current utterance; therefore, it may 
produce confusion because the degree of change depends on each 
user. Therefore, we also use tendency. Tendency represents only 
the direction of change. The equation is as follows: 

 

else

RatioFeature
Tendency(Feature)

1
1)(0

 

 
This equation means that if the feature of a current utterance is 
larger than that of a target sub-utterance, the tendency value is 1. 
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We have separated the specific features into three categories. 
Table 1, below, presents the normalized prosodic features we use. 

 
Table. 1. Normalized Prosodic Features for Classifying User Intention 

Prosodic 
Category 

Specific Features 

Normalized 
Pitch 

Ratio of Max Pitch 
Ratio of Min Pitch 
Tendency of Max Pitch 
Tendency of Min Pitch 

Normalized 
Intensity 

Ratio of Max Intensity 
Ratio of Min Intensity 
Tendency of Max Intensity 
Tendency of Min Intensity 

Normalized 
Duration 

Ratio of Full Utterance Duration per Syllable 
Ratio of Sub-utterance Duration per Syllable 
Tendency of Full Utterance Duration per Syllable 
Tendency of Sub-utterance Duration per Syllable 

 
4.3. Distance of Pronunciation Sequences
 
We measure a distance between the pronunciation sequence of the 
most similar target sub-utterance and the pronunciation sequence 
of the current utterance. We use a Levenshtein distance as a 
distance measure, but it depends on the length of the pronunciation 
sequence. Even when the different proportions of two 
pronunciation sequences are equal, the shorter pronunciation 
sequence has a lower Levenshtein distance value, and therefore, it 
must be normalized. The equation is below. 

l
LD

Distance  

where LD is the Levenshtein distance value between the 
pronunciation sequence of the target sub-utterance and that of the 
current utterance, and l is the length of the pronunciation sequence 
of the current utterance. The normalized value reflects the 
difference between the pronunciation sequences of the current 
utterance and the target sub-utterance. The lower the value, the 
more similar the pronunciation sequences between the current 
utterance and the target sub-utterance. 
 
4.4. Feature Verification 
 
We generated training data that included 458 instances from raw 
wave data. We labeled 211 instances as non-correction and the 
other 247 instances as correction. Each instance has an intention 
label and 13 features (12 normalized prosodic features and 1 
distance feature). 

 
Figure. 2. Distribution of correction instances by the tendencies of 
prosodic features 

Fig. 2 shows the distributions of correction instances by the 
tendencies of their prosodic features. The best-separated prosodic 
feature is the tendency of sub-utterance duration per character. We 
can see that the correction utterances tend to be slower than the 
target utterances. We can also find characteristics of clear speech, 
in that the pitch range and intensity range of the correction 
utterances are slightly wider than those of the target sub-utterances. 

 
Figure. 3. Distribution of instances by the distance of pronunciation 
sequences 
 

Fig. 3 shows a distribution of instances by the distance of 
their pronunciation sequences. Correction utterances are 
distributed in a relatively low region of the distance value, 
separated from non-correction utterances, so that the distance 
feature is effective for classifying intention. 

 
5. EXPERIMENT 

 
To evaluate the performance of the user intention understanding of 
our interface, we used a support vector machine as a classifier with 
radial basis function (RBF) and we validated our approach with a 
10-fold cross validation. As a baseline, we used majority of 
correction. 

We also evaluated the effectiveness of our interface compared 
to a general two-step error correction interface that we developed 
as a baseline. We gave 8 users a task making documents consisting 
of 10 sentences with 264 Korean syllables. 

 
5.1. Performance of User Intention Understanding
 
In voice word processor, the false correction and non-correction 
cause duplicated tasks making users uncomfortable. Therefore, 
accuracy is the most important evaluation value. 

Table 2 shows the validation results. The best result was 
obtained by combining the tendencies of all prosodic features and 
the distance of pronunciation sequences; it achieved 82.91% 
classification accuracy. The ratio features reflected information on 
both the direction and the degree of change. As single normalized 
prosodic features, the ratio features were effective. However, in a 
combined model (all normalized prosodic features + distance 
feature), we found that the degree of change confused the 
classification user intention, because the degree of change was 
relatively smaller than the distance; therefore, in the combined 
model, considering only the tendency features was more effective. 

The most effective single feature was the distance of 
pronunciation sequences; it achieved 78.89% classification 
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accuracy, but it depended on the performance of the ASR. ASR 
with a high error rate produced many errors and caused a higher 
distance feature. Therefore, other features are required that are 
independent of the performance of ASR. 
 
5.2. Effectiveness of Seamless Error Correction 
 
We measured average syllables and average turns to complete a 
task including command syllables and turns. We also measured 
average syllables and average turns to correct an error including 
command syllables and turns. 
 
Table. 3. Effectiveness of Two Error Correction Interfaces 

 Syllables Turns Syllables  
per error 

Turns  
per error 

Two-step error 
correction 
interface  

392.23 21.82 29.67 3.45 

Seamless error 
correction 
interface 

346.35 16.35 21.54 2.25 

 
Table 3 shows the effectiveness of two error correction interfaces. 
Average syllables per task were reduced about 45.88 and average 
turns per task were also reduced about 5.47; the differences were 
statistically significant (p = 0.028 for syllables, p = 0.018 for turns; 
paired T-test). Our interface improved the effectiveness about 
13.25% for average syllables per task and about 33.46% for 
average turns per task. For an error correction, a general two-step 
error correction interface needed about 29.67 syllables and about 
3.45 turns, but our interface needed about 21.54 syllables and 
about 2.25 turns; the differences were also statistically significant 
(p = 0.002 for syllables per error , p = 0.036 for turns per error; 
paired T-test). In an error correction, our interface also improved 
the effectiveness about 37.74% for syllables and about 53.33% for 
turns. This result shows that our interface can work effectively with 
82.91% classification accuracy for user intention understanding.

 
6. CONCLUSION 

 
In this paper, we observe the characteristics of correction utterance 
alongside the characteristics of clear speech. We classify user 
intention using the normalized prosodic features and the distance 
feature and achieve 82.91% success. Furthermore, with 82.91% 
success of user intention understanding, we prove the effectiveness 

of our seamless error correction by comparison to a general two-
step error correction. 

By understanding a user’s intention, we are able to provide a 
system that can automatically enter correction mode with only the 
correction utterance of a replacement text, that is, a seamless 
correction. With this seamless correction, in composing a 
document, users need not remember any voice commands for 
entering correction mode and may simply speak sentences they 
want to type. Therefore, the efficiency of the process may be 
increased. In addition, the developers of a voice word processor 
need not design any voice commands for entering the correction 
mode. 
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Table. 2. User Intention Classification Accuracy 
Features Category Accuracy (%) 

Baseline (majority) 54.27 
Normalized pitch 75.37 

Normalized intensity 75.88 
Normalized duration per syllable 77.89 
All normalized prosodic features 79.90 

Distance 78.89 
All normalized prosodic features + 

distance 79.90 

Normalized prosodic features without 
ratios + distance 82.91 
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