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ABSTRACT

This paper proposes a first-ever phrase-level transduction
model with reordering to transform colloquial speech di-
rectly to written-style transcription. This model is capable
of performing n-m transductions. Our transduction model
is trained from a parallel corpus of verbatim transcription
and written-style transcription. Deletions, substitutions, in-
sertions are well represented using this model. Inversion
transduction cases can also be identified and represented.
We implement our transduction model using weighted finite-
state transducers (WFSTs), and integrate it into a WFST-
based speech recognition search space to give both verbatim
speaking-style and written-style transcriptions. Evaluations
of our model on Cantonese speech to standard written Chi-
nese show 11.59% relative Word Error Rate (WER) reduction
over interpolated language model between Cantonese and
standard Chinese speech, 5.72% relative WER reduction and
14.82% relative Bilingual Evaluation Understudy (BLEU)
improvement over the word-level transduction model.

Index Terms— spoken to written language transforma-
tion, phrase-level transduction, reordering, WFST

1. INTRODUCTION

There is often a large discrepancy between colloquial speaking-
style speech and written standard language. In the case of
certain language groups, discrepancies can run the gamut
from pronunciation, lexical to syntax, as is the case for Can-
tonese Chinese. Sinitic languages such as Cantonese/Yue,
Shanghai/Wu, etc. are officially considered ”dialects” of the
standard written Chinese Putonghua (or Mandarin). How-
ever, they differ greatly from Mandarin in all aspects and are
not mutually comprehensible. In addition to lexical and pro-
nunciation differences, Cantonese differs syntactically from
Mandarin as well - we found that there are around 10% cases
of syntactic inversion between sentences of the two forms of
Chinese. Since Cantonese does not have an official written
form, there are very little written texts available for training
language models. Manual transcription of Cantonese is also

more expensive because transcribers are not familiar with
verbatim transcription of Cantonese.

Owing to the high cost of manual transcription, often
an interpolation of language models between speaking-style
transcription and standard written texts is used in most ASR
systems. Others proposed transforming written-style lan-
guage models to speaking-style language models by word-
level transduction, either in a context-independent or context-
dependent manner [1, 2, 3]. All such methods attempt to
enrich colloquial language model by using a large amount of
written-style texts and a small amount of colloquial speech.
However, interpolated models do not have enough coverage
and word-level transduction assumes 1-1/n-n transduction.
Yet, n-m transduction is a common occurrence between spo-
ken and written languages. More importantly, previous work
[1, 2, 3] did not consider inversion cases, which frequently
occur between Cantonese and Mandarin, as explained above.
Inspired by the alignment template model [4] in statistical
machine translation (SMT), we propose a phrase-level trans-
duction model with reordering using WFSTs to take into ac-
count syntactic discrepancies between speaking-style speech
(e.g. Cantonese) and written-style speech (e.g. Mandarin).

We also propose to integrate speech recognition and
speaking-to-written style transcription transduction in a
globally optimized single system. Previous work decou-
pled speech recognition and phrase-based translation into a
two-step process [5, 6, 7]. We propose to instead incorporate
phrase-level transduction into the ASR search network us-
ing a WFST-based speech recognition decoder [8] to output
both verbatim Cantonese transcriptions and standard written
Chinese transcriptions.

2. NOISY-CHANNEL MODEL FOR SPOKEN TO
WRITTEN LANGUAGE TRANSFORMATION

In automatic speech recognition, given an observed speech
vector X , the decoding process finds the best word sequence
v̂I1 (consists of words v1, v2, ..., vI ) by maximizing the pos-
terior probability P (vI1 |X), in which vI1 is the verbatim
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transcript representing the faithful transcription of colloquial
speech. According to Bayes’ law, we can further decompose
P (vI1 |X) into an acoustic model P (X|vI1) and a language
model (LM) P (vI1) . However, there is always a lack of ver-
batim transcript to train the LM P (vI1). In order to estimate
P (vI1), we utilize LM transformation (see Eq. (1)) based on
noisy-channel model to transform written-style transcript wJ

1

(consists of words w1, w2, ..., wJ ) to verbatim transcript vI1
through maximization of P (vI1 |w

J
1 )P (wJ

1 ). LM P (wJ
1 ) can

be trained from a large quantity of written-style transcript
wJ

1 , while transduction model P (vI1 |w
J
1 ) is estimated from a

parallel corpus of aligned vI1 and wJ
1 .

v̂I1 = argmax
vI

1

P (vI1 |X)

= argmax
vI

1

P (X|vI1)P (vI1)

= argmax
vI

1

P (X|vI1)
∑

wJ

1

P (vI1 |w
J
1 )P (wJ

1 )

∼= argmax
vI

1

P (X|vI1)max
wJ

1

P (vI1 |w
J
1 )P (wJ

1 ) (1)

3. PHRASE-LEVEL TRANSDUCTION MODEL

Instead of the word-level transduction model, we propose
a phrase-level transduction model that not only allows n-m
alignments, but also captures the inversion transduction cases.

We define a phrase sequence ṽK1 (consists of phrases
ṽ1, ṽ2, ..., ṽK ) segmented from word-level verbatim transcript
vI1 and w̃K

1 (consists of phrases w̃1, w̃2, ..., w̃K ) segmented
from word-level written-style transcript wJ

1 . Furthermore, we
define a reordering sequence rK1 , of which the detail can be
found in section 3.2.

The phrase-level transduction model P (vI1 |w
J
1 ) is de-

composed into four components (see Eq. (2)): segmentation
model P (w̃K

1 |wJ
1 ), phrase reordering model P (rK1 |w̃K

1 , wJ
1 ),

phrase-to-phrase transduction model P (ṽK1 |rK1 , w̃K
1 , wJ

1 )
and reconstruction model P (vI1 |ṽ

K
1 , rK1 , w̃K

1 , wJ
1 ). Before

presenting each component model and its WFST implemen-
tation, we need to extract two phrase tables for the verbatim
transcript and written-style transcript, respectively.

P (vI1 |w
J
1 )

∼= max
ṽK

1
,rK

1
,w̃K

1

P (w̃K
1 |wJ

1 ) · P (rK1 |w̃K
1 , wJ

1 ) ·

P (ṽK1 |rK1 , w̃K
1 , wJ

1 ) · P (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ) (2)

The phrase extraction is based on word-to-word align-
ments of the parallel corpus trained with GIZA++. Fig. 1
shows an example of word-to-word alignment results between
the verbatim transcript (Cantonese) and the written-style tran-
script (standard Chinese), from which phrase-to-phrase align-
ments are derived by means of identifying deletion, substitu-
tion, insertion and inversion.

Fig. 1. An example of phrase extraction from word-to-word
alignments. i and j are word indexes. k′ and k are phrase
indexes. i↔j represents the word-to-word alignment.

Deletion can be modeled as alignment (3). According
to this alignment, we extract a phrase ṽk = vi for the ver-
batim transcript and a phrase w̃k = wj wj+1 · · · wj′ for
the written-style transcript. The “ ” symbol is used to indi-
cate the concatenation of consecutive words forming a phrase.
Alignment (4) is for substitution with ṽk = vi vi+1 · · · vi′ ,
w̃k = wj wj+1 · · · wj′ , and alignment (5) is for insertion
with ṽk = vi vi+1 · · · vi′ , w̃k = wj . An inversion transduc-
tion can be identified if it matches any of the three alignment
patterns (3)(4)(5) under the condition that j′ in current phrase
is smaller than j in the previous phrase. With phrase extrac-
tion, we can obtain a table of phrases {ṽ1, ṽ2, ..., ṽK} for the
verbatim transcript and {w̃1, w̃2, ..., w̃K} for the written-style
transcript.

vi ↔ wj , vi ↔ wj+1, · · · , vi ↔ wj′ (3)

vi ↔ wj , vi+1 ↔ wj+1, · · · , vi′ ↔ wj′ (4)

vi ↔ wj , vi+1 ↔ wj , · · · , vi′ ↔ wj (5)

3.1. Segmentation and Reconstruction Models

Segmentation model P (w̃K
1 |wJ

1 ) segments word sequence
wJ

1 into K phrases. We define segmentation order s, where
s = j′ − j + 1, to represent the maximum number of words
that can be segmented into one phrase. The WFST imple-
mentation of the segmentation model is described in Fig.
2(a). It shows a portion of segmentation transducer Sw for
the written-style transcript when segmentation order s = 3.
Reconstruction model P (vI1 |ṽ

K
1 , rK1 , w̃K

1 , wJ
1 ) operates in

the opposite direction as the segmentation model. Fig. 2(b)
shows a portion of the reconstruction transducer Rv for the
verbatim transcript consistent with Sw.

(a) Sw (b) Rv

Fig. 2. WFST implementation of the segmentation model (a)
and the reconstruction model (b).
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3.2. Phrase Reordering Model

Fig. 1 shows that the phrase order of the verbatim tran-
script may differ from the written-style transcript. We de-
fine a phrase reordering model P (rK1 |w̃K

1 , wJ
1 ), which re-

orders phrase positions of the written-style transcript into
those of the verbatim transcript according to a reordering
sequence {rK1 : rk ∈ {1, 2, ...,K}, rk �= rk′ �=k}. The
phrase sequence {w̃1, w̃2, ..., w̃K} is therefore reordered into
{w̃r1 , w̃r2 , ..., w̃rK}.

P (rK1 |w̃K
1 , wJ

1 ) = P (rK1 |w̃K
1 )

= P (r1)

K∏

k=2

P (rk|rk−1, w̃
K
1 ) (6)

We make a first order Markov assumption over the phrase
reordering model as shown in Eq. (6). The reordering se-
quence distribution is parameterized to assign decreasing like-
lihood to phrase re-orderings that diverge from the original
word order [9]. Suppose w̃rk = wl′

l and w̃rk−1
= wq′

q , the
reordering sequence distribution is set as Eq. (7), where p0
is a tuning factor. We normalize the probabilities P (rk|rk−1)

such that
∑K

k′=1,k′ �=rk−1
P (rk = k′|rk−1) = 1.

P (rk|rk−1) = p
|l−q′−1|
0

P (r1 = k) =
1

K
; k ∈ {1, 2, ...,K}

(7)

Assume that we have a phrase sequence {w̃1, w̃2, w̃3},
Fig. 3 shows the WFST implementation of phrase reorder-
ing model for this phrase sequence.

Fig. 3. Phrase reordering transducer Ωr for phrase sequence
{w̃1, w̃2, w̃3}.

3.3. Phrase-to-Phrase Transduction Model

Once the phrase sequence of the written-style transcript is re-
ordered into the verbatim transcript order, we use the phrase-
to-phrase transduction model specified in Eq. (8) to perform
the transduction. It assumes that a phrase ṽk is generated in-
dependently by each phrase w̃rk . This model can be easily
implemented by a transducer Tvw which transduces ṽk to w̃rk .

P (ṽK1 |rK1 , w̃K
1 , wJ

1 ) =
K∏

k=1

Pk(ṽk|w̃rk) (8)

3.4. Phrase-Level Transduction Via WFSTs

Our phrase-level transduction model P (vI1 |w
J
1 ) can be con-

structed via WFST composition [10] (denoted by ◦) of all the

component models as shown in Eq. (9), where T is the final
composed WFST that transduces vI1 to wJ

1 .

T = Rv ◦ Tvw ◦ Ωr ◦ Sw (9)

Now the recognition model for colloquial speech in Eq.
(1) can be implemented using a transducer ASR, which is
formulated with a unified WFST approach as shown in Eq.
(10).

ASR = H ◦ C ◦ L ◦ π(T ◦G) (10)

Here H transduces HMM states to context-dependent
phones. C represents a transduction from context-dependent
phones to context-independent phones. L is a lexicon trans-
ducer which maps context-independent phone sequences to
word strings restricted to a LM [8]. The LM can either be
T ◦ G or π(T ◦ G), where G is a LM to be transformed. π

is a projection [10] operator which projects the input label
to output label. T ◦ G outputs the written-style recognition
result, and π(T ◦G) outputs the speaking-style result. Before
decoding, the recognition transducer ASR is optimized by
determinization [8] operation right after each composition.

4. EXPERIMENTAL SETUP

We evaluate our phrase-level transduction model on Can-
tonese parliamentary speech from the Hong Kong Legislative
Council. Currently we only have 3364 parallel transcribed
sentences containing 15.7 hours of speech. It is separated
into two sets, Set A (3.8 hours, 664 sentences) and Set B
(11.9 hours, 2700 sentences). Set A is only used for evalu-
ation of WER and BLEU score. The WER evaluation is on
the speaking-style output against the verbatim transcription
(manual transcription). The BLEU score evaluation is on
the written-style output against the written-style transcription
(Hansard transcription). The parallel transcriptions of Set
B constitute the parallel corpus, which includes verbatim
transcription of 106k words and written-style transcription
of 80k words. Besides the parallel corpus, we have a set of
additional Hansard transcription, which has 31M words.

The acoustic model is a tied-state cross-word triphone
model with 39-dimensional MFCC feature trained from Set
B. It comprises 70 Cantonese phoneme HMMs as well as
silence, short pause and noise. The interpolated LM us-
ing words as modeling units is trained from the additional
Hansard transcription together with the parallel corpus.

All transduction models are trained from the parallel cor-
pus. Our reordering model permutes K phrases. Empirically,
we find that K ≤ 5 is capable of capturing most of the inver-
sion transduction cases.

Decoding is performed by T 3 Decoder [11], which is a
state-of-the-art WFST-based LVCSR speech decoder.
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Table 1. WER for various recognition models. G is the in-
terpolated LM. T n

w is the word-level n-to-n TM. T s
p is the

phrase-level TM, where s is the segmentation order.
Models WER (%)

H ◦ C ◦ L ◦G 29.85

H ◦ C ◦ L ◦ π(T n
w ◦G)

n = 1 n = 2 n = 3

29.09 27.99 28.37

s=2 27.66/27.09

H ◦ C ◦ L ◦ π(T s
p ◦G) s=3 27.05/26.39

(without/with Reordering) s=4 27.52/27.01

s=5 28.11/27.63

Table 2. BLEU score for the best word-level TM and phrase-
level TM.

Models BLEU Score

The Best Word-Level TM 27.94

The Best Phrase-Level TM 32.08

5. EXPERIMENTAL RESULTS

Table 1 shows WER results for the interpolated LM, word-
level and phrase-level transduction model (TM). The best
word-level TM T 2

w gives 6.23% relative WER reduction over
the interpolated LM. The phrase-level TMs T 2

p , T
3
p , T

4
p con-

sistently outperform word-level TM even without reordering.
It is noteworthy that T 3

p without reordering can reduce the
WER by 3.36% relative to the best word-level TM. When
increasing the segmentation order s, T 3

p outperforms T 2
p ,

suggesting that grouping more words into one phrase does
improve the effectiveness of transduction. However, fur-
ther increasing s decreases the performance. The reason is
probably that Chinese phrases tend to be 2 to 3 words long.

Table 1 also shows the effectiveness of the proposed
reordering model, which gives 0.4%∼0.7% absolute WER
reduction over those without reordering. For example, T 3

p

with reordering can reduce the WER by 0.66%. In Table
2, the phrase-level TM shows 14.82% relative BLEU score
improvement over the word-level TM, which further demon-
strates the effectiveness of phrase-level transduction. All the
improvements are statistically significant according to the
two-proportion z-test at 99% confidence.

6. CONCLUSION AND DISCUSSION

In this paper, we propose a first-ever integrated model of
speech recognition with phrase-based transduction to de-
code Cantonese speech into both verbatim transcriptions and
standard written transcriptions. We use a large amount of
Mandarin data and a small amount of Cantonese data, as
well as some Cantonese-to-Mandarin parallel data, with fo-
cus on solving the language modeling challenge with limited

verbatim training data.
We propose to transform the language model of the stan-

dard written Chinese to Cantonese language model. However,
instead of word-to-word transformation, this paper proposes
a phrase-level transduction model with reordering to achieve
better transduction that allows n-m transduction. Our pro-
posed model gives 5.72% relative improvement on WER for
verbatim Cantonese transcription and 14.82% relative im-
provement on BLEU score for Cantonese-to-Mandarin trans-
duction. Our proposed model can be applied to many other
low-resource languages with insufficient verbatim transcrip-
tion for language model training. Possible future research
direction is to generalize our model to speech translation,
though more advanced reordering models may be explored.
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