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ABSTRACT

This paper is concerned with combining models for decoding an op-
timum translation for a dictation based machine aided human trans-
lation (MAHT) task. Statistical language model (SLM) probabilities
in automatic speech recognition (ASR) are updated using statistical
machine translation (SMT) model probabilities. The effect of this
procedure is evaluated for utterances from human translators dic-
tating translations of source language documents. It is shown that
computational complexity is significantly reduced while at the same
time word error rate is reduced by 30%.
Index Terms: speech recognition, machine translation, speech input
interfaces

1. INTRODUCTION
There are many language translation applications which place high
cognitive load on human translators and also pose rigorous standards
of quality on the resulting translation. As a result, it is not expected
that fully automated machine translation (MT) approaches will be
able to meet the high standards associated with tasks like profes-
sional document translation as performed in many translation bu-
reaus. However, there is an extensive literature on machine aided
human translation (MAHT) which is motivated by the inability of
existing automated systems to meet these demands. This literature
describes a large number of scenarios where human translators inter-
act with a machine through a variety of modalities including typing,
handwriting, and speaking to improve the efficiency and accuracy of
the translation process[1, 2, 3].

Most of these scenarios are addressed by approaches that in-
tegrate statistical machine translation (SMT) models with statistical
models representing one or more of these interactive modalities. The
goal in this integration is to either present suggestions to the human
translator based on previous input from the translator or to constrain
the solution space when decoding input from the translator. In one
particular MAHT scenario, it is assumed that the translator’s input is
in the form of speech dictation of a target language translation given
the text of a source language document. From a Bayesian perspec-
tive, integration in this scenario involves decoding the translation, a
target language text string, ê, from a speech feature vector sequence,
x, and a source language text string, f , by maximizing the posterior
probability:

ê = argmax
e

p(e|x, f) = argmax
e

p(x|e) · p(e|f)
= argmax

e
p(x|e) · p(f |e) · p(e), (1)
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where it is assumed in Eq. (1) that x and f are conditionally inde-
pendent given e [1, 4, 3]. This assumption is considered reasonable
since the acoustic model representing the speech vector sequence
probability, p(x|e), and the n-gram statistical language model (LM)
representing the target language text, p(e), are trained when config-
uring an automatic speech recognition (ASR) system, and the trans-
lation model, representing the relationship between the source and
target language text, p(f |e), is trained using a parallel corpus asso-
ciated with configuring an SMT system.

There are many different scenarios that can be applied to com-
bining models for decoding the optimum translation as given by
Eq. (1) where each implies different assumptions about system im-
plementation and constraints on computational complexity. One sce-
nario is to assume that, for each source language sentence, the lan-
guage model of the ASR system can be updated using information
derived from the text of that individual sentence [1]. Updating the
LM assumes that it is practical to update the n-gram statistical lan-
guage model (SLM) probabilities prior to decoding the translation
speech utterance, x, using translation model probabilities, p(f |e).
This first pass SMT / SLM integration approach is investigated in
this paper. A second scenario is to re-rank hypotheses generated
by the ASR system using the translation model probabilities as part
of a multi-pass decoding scenario [4]. This can be done either by
re-ranking the list of m-best string hypotheses or re-scoring word
lattices produced by the ASR system.

If complexity is not a factor, both of these approaches should
have a similar impact on the word error rate (WER) of the combined
system. However, the advantage of the first pass approach is that
applying the translation model to constraining search in ASR allows
for more aggressive pruning strategies to be applied during search
without having to sacrifice WER. This is important if ASR decoding
time and lattice size are important issues as they often are in MAHT
scenarios. Of course, response times must always be minimized in
human interactive scenarios and the size of lattices must be mini-
mized to reduce the overhead associated with re-scoring with other
knowledge sources. In fact, this work was initially motivated by the
need to generate more compact lattices to reduce the memory asso-
ciated with operating on the lattices [3].

A method for implementing the combined decoding strategy in
Eq. (1) by sentence level updating of the ASR tri-gram LM using the
SMT derived translation probabilities is presented in Section 2. Both
the efficiency and the performance of this procedure are evaluated in
Section 5.2 using a corpus collected from human translators dictat-
ing their first draft English language translation of French language
Hansard documents [3].
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2. FIRST PASS INTEGRATION OF SMT AND SLM

The dictation based MAHT scenario presented in Section 1 involves
decoding the optimum target language translated text string from a
translator’s target language utterance as described in Eq. (1) while
taking advantage of the fact that the source language word string,
f = f1 . . . fJ , is assumed to be known prior to recognition. The
first pass integration scenario involves updating the ASR SLM prob-
abilities, p(e), with SMT model probabilities, p(f |e), so that ASR
decoding is performed with a new SLM pw(e). Hence, the decoding
problem in Eq. (1) reduces to

ê = argmax
e

p(x|e)pw(e). (2)

This section describes the estimation of pw(e) and the implica-
tions of the first pass integration procedure for the handling out-of-
vocabulary words.

2.1. Incorporating Translation Probabilities
In order to use source language information, translation models
p(f |e) are used to modify the generic LM, p(e), and create a mod-
ified LM represented by, pw(e). An n-gram LM, p(e), can be
defined simply as the probability of seeing a word given a history of
previously occurring words. That is

p(e) =
I∏

i=1

p(ei|ei−1
i−n+1) (3)

where ei is the current word and ei−1
i−n+1 is its history. Therefore,

re-scoring an n-gram model implies re-scoring every one of these el-
ements. In the method described in this paper, the translation model
is used as a re-scoring function. This implies that the probability,
p(f |ei), for each n-gram conditional probability producing the word
ei needs to be obtained.

It is important to note that statistical translation models [5] usu-
ally deal with whole source and target sentences and not with the
probability of generating a whole sentence from a single target word.
Hence, the usual concepts on which word statistical models rely
(alignments, fertility, distortion, etc.) cannot be applied here and a
simpler model needs to be adopted. We propose a translation model
where each word ei in the target sentence can be produced only by
a single word fj in the source sentence (similar to what is described
in [6]). Specifically, we propose to define the probability, p(f |ei),
as:

p(f |ei) ≈ argmax
j

p(fj |ei) (4)

That is, we choose for each word ei the most likely word in the
source sentence that can be generated from ei. From this, we can
approach p(f |e) · p(e) as:

pw(e) = p(f |e) · p(e) ≈
I∏

i=1

p(ei|ei−1
i−n+1) ·

I∏

i=1

argmax
j

p(fj |ei).
(5)

Nevertheless, more complex translation models could be also ap-
plied in a later stage, following, for instance, a similar strategy as
described in [4].

2.2. Updating n-gram LM Probabilities
In this work, the process of n-gram re-scoring involves modifying
all the n-gram probabilities using the translation probabilities as de-
scribed in Eq. (5). Updating the n-gram LM should result in a a new
LM with a valid probability distribution. Given an initial smoothed
back-off LM, the procedure described in this section is used for up-
dating both the n-gram probabilities and the back-off weights.

The n-gram probabilities are updated as follows. First, the over-
all probability mass for all the n-gram probabilities sharing a history
ei−1
i−n+1 is stored. Since we are dealing with a smoothed model, this

probability mass will be less than one. Second, all these n-gram
probabilities are updated as shown in Eq. (5). Finally, these proba-
bilities are normalized according to the previous stored probability.
This allows probability to be redistributed according to the trans-
lation model, but leaves the discounted probability mass estimated
during the original smoothed n-gram training unchanged.

Let e be a target language word and let h be a word sequence
corresponding to the history of e for the set E of n-grams in the LM.
Let p(e|h) be the original n-gram probability and let p(fj |e) be the
probability of producing the word fj in the source sentence from the
target word e. The new n-gram probability, pw(e|h), is computed
as:

pw(e|h) =
p(e|h) · argmax

j
p(fj |e)

norm(h)
. (6)

The normalization factor is obtained as follows:

norm(h) =

∑

e′/he′∈E

pw(e
′|h)

∑

e′/he′∈E

p(e′|h)
. (7)

Where e′ denotes all words seen after history h in the LM.

Once all of the relevant probabilities have been updated, the
back-off weights in the n-gram are re-normalized to obtain a true
probability distribution. For a history h, the new back-off weight
bow(h) is updated as:

bow(h) =

1−
∑

e′/he′∈E

p(e′|h)
∑

e′′/he′′ /∈E

p(e′′|h)
. (8)

Note that the denominator in Eq (8) denotes the lower-order proba-
bility estimate.

The translation model probabilities, p(fj |ei), are obtained by
training an IBM 3 SMT model [5] from a parallel corpus as described
in Section 3. The translation table, t(f |e), from this model was used
to represent p(fj |ei). Given the source sentence and all the n-grams
in the LM, only a small number of target language words are ob-
served in the table as suitable translations for the source language
words. As a consequence, the computation of the updated probabil-
ities is actually performed on a small fraction of the n-grams in the
LM. This allows for an efficient implementation of the LM update
procedure.

There are clearly occasional instances where the translation
probabilities derived from the source language text string do not
provide significant information for updating the ASR LM. An ob-
vious example would be when many words in the source language
text are not included in the SMT vocabulary. It has been found in
practice that overall performance can be improved by estimating a
sentence level measure of confidence for the translation model and
incorporating it in weighting the translation model’s contribution to
the final combined score. Therefore, the LM is updated according to
a log linear model as it is shown in Eq. (9).

log pw(e) = λ1 log p(f |e) + λ2 log p(e). (9)
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Where the weights in Eq. (9) are estimated dynamically for each
sentence. The estimation of the sentence level translation confidence
and its role in updating the weights in Eq. (9) is discussed in [7].

2.3. OOV Words, Pass-Throughs, and Named Entities
It is extremely important to account for words in the source language
text string, f , which are out-of-vocabulary (OOV) with respect to the
SMT system and words in the target language utterance, x, which
are OOV with respect to the ASR system. In both cases, these OOV
words often correspond to person names, locations, and other named
entity (NE) categories. In SMT, it is often advantageous to allow for
OOV words and phrases associated with NE’s in the source language
text to be “passed-through” and included un-translated in the target
language text. Pass-through words for a given source language sen-
tence can be incorporated in the updated LM probabilities, pw(e) as
follows. First, NEs are tagged in the source language sentence using
a named entity recognizer (NER). Second, OOV words which are
tagged as NEs are included as unigrams in the updated LM. The

probability assigned to those words is pw(NE) = 1/ ˆ|e|, where
ˆ|e| is an estimator for the target sentence length obtained from the

source sentence and the fertility models used in the IBM 3 translation
model. Since almost all of the SMT OOV words are also ASR OOV
words, this approach was found to dramatically reduce the impact of
ASR OOV words in the combined decoder.

3. COMPONENT ASR, SMT AND NER SYSTEMS

In this Section a brief description of the various systems used in the
experiments is given. The large vocabulary speech recognition sys-
tem used in this work is the HTK Toolkit from Cambridge Univer-
sity [8]. The acoustic models used in these experiments were trained
from 80 hours of read speech collected from 988 speakers [9]. The
models consisted of 6015 clustered states and 96,240 Gaussian den-
sities. The baseline LM used for the experiments conducted here
was built from more than 350 million words obtained from Broad-
cast news [10], North American news corpus [11] and Canadian En-
glish language Hansard corpus [12]. The dictionary was built from
the 20000 most frequently occurring words in the aforementioned
database.

The statistical machine translation system used in this work was
obtained through the GIZA++ tool [6] from the Canadian Hansard
corpus. About 1 million French/English parallel sentences of the
Hansard corpus were used to train the translation model.

The NER system used in this paper was built at the University of
Tours [13]. It consists of a series of Finite State Transducer cascades
that implement syntactic analysis and information extraction in order
to tag every word occurring in the source language text. For this
system, the NER system was configured such that it tags words into
the following categories: Organization, Person, Product, Location,
Classifier, Event, Time/Date, and Other. For the source language
test set used in this paper, the NER system gave a 95% recall and
61.2% precision when used to detect NEs.

4. TRANSLATION DICTATION TASK DOMAIN

The experiments were performed on a test corpus that was acquired
from translators dictating a first draft translation of a source language
document. Each translator is given an excerpt from the Canadian
French Hansards and was asked to dictate a first draft translation in
English. Prior to dictation, the translator goes through the source
language document to mark any unfamiliar words or phrases to be
looked up in a dictionary or terminology database. Under this sce-
nario, speech data was collected from 9 bilingual speakers, 3 male

and 6 female. Each translator was given a 700-2000 word excerpt
from non-overlapping sections of the Canadian French Hansards.
The translators dictated the translations of the source language docu-
ments, amounting to a total of 456 dictated sentences with an average
of 25 words per sentence. Of the 456 sentences thus collected, 200
were used as development data and 256 were used as test data.

5. EXPERIMENTAL SETUP AND RESULTS

This section describes the experiments performed to evaluate the
techniques presented in Section 2. First the implementation of the
evaluation scenario where document level utterances are aligned
with sentence level source language text is described. Second, per-
formance is presented both as the perplexity of the updated ASR
LM, word error rate (WER) and oracle WER (OWER) on the test
utterances taken from the spoken dictation task domain described in
Section 4.

5.1. Implementation of LM Updating Scenario
As mentioned in Section 2.2, the LM used in the ASR system is
modified such that it incorporates information from the translation
model. In the scenario discussed in this paper each translator was
asked to dictate translation of an entire source language document.
However, update of the LM is performed here for each sentence in
the source language document using translation probabilities derived
at the sentence level. In order to do this, first the entire dictated
translation was segmented into smaller utterances based on silence
intervals in the utterance. Then, ASR was performed on these ut-
terances giving a baseline transcription of the dictated translation.
This transcription not only gave baseline word error rate (WER) re-
sults, but also provided a means for performing sentence alignment.
The sentence alignment for this corpus is described in greater detail
in [3].

Once the sentence alignment is performed, translation model
probabilities, p(f |e) are obtained for each sentence in the source lan-
guage document. These are used to update the baseline LM, p(e),
for that sentence in order to obtain the updated LM, pw(e), as de-
scribed in Section 2. Hence, for each sentence in the source lan-
guage document, an updated LM is produced to incorporate trans-
lation model probabilities for that sentence. This modified LM is
used to perform ASR on translation utterances corresponding to that
source language sentence. It is important to note that, using the pro-
cedure for local updating and normalizing of n-gram probabilities
described in Section 2.2, the sentence level updating can be very ef-
ficient. Only a very small percentage of LM parameters are updated
for a given sentence.

The baseline LM used in the experiments is different from the
updated LMs in two ways. First, as discussed in Section 2.3, NEs
that are OOVs to the original LM are included in the unigram model
of the updated LM as part of the updating process. Consequently, a
closed vocabulary was employed for the updated LMs, whereas the
baseline LM is an open vocabulary model. This inclusion of NEs in
the unigram model of the closed vocabulary updated LMs causes a
significant decrease in WER as discussed in Section 5.2. Second, as
mentioned above, the updated LMs are specific for each sentence in
the document. The baseline LM on the other hand is a generic model
that is the same for every sentence.

5.2. Results
The performance of the updated LM in terms of both perplexity and
ASR WER are reported in Table 1. The first row of Table 1 dis-
plays the LM test set perplexity for the baseline and sentence up-
dated LMs. The perplexity for the sentence updated LM is obtained
by accumulating the sentence level perplexity estimates obtained for
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Performance measure Baseline LM Updated LMs

Perplexity 64.7 32.6
WER 16.5 11.7

Oracle WER 6.3 3.8

Table 1. Test set perplexity and WER performance for translation
dictation domain test

each sentence specific updated LM. As can be seen, a 50% relative
decrease in perplexity is achieved by updating the LM. The second
row of Table 1 displays the WER obtained using the baseline LM
and the updated LM. A 29.1% relative decrease in WER is obtained
for updated LM relative to the baseline LM.

The LM updating procedure is also evaluated in terms of the
OWER which provides a measure of the best possible WER that
could be obtained by re-scoring the ASR lattices generated using
the updated LM. The OWER is computed by aligning the refer-
ence string for each utterance with the word lattice generated for
that utterance. The third row of Table 1 shows that the updated LM
provides a 39% reduction in OWER relative to the baseline LM. It
should be noted here that the experiments to compute OWER were
performed after ensuring that the lattices generated by baseline LM
and updated LMs were of the same size. The results in the third
row of Table 1 show that even though the lattices generated by the
two systems are of the same size, the lattices generated using the
updated LMs are richer and contain more relevant data than lattices
generated by the baseline system. This implies potentially more ef-
ficient implementations of procedures for lattice re-scoring in this
domain since the updated LM could produce much smaller lattices
with equivalent OWERs.
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Fig. 1. Oracle WER for Lattices with N -best hypotheses

The plot in Figure 1, provides a description of how the OWER
depends on the lattice size. The horizontal axis of Figure 1 represents
the size of the lattices after they were pruned to retain only the top
N highest scoring paths. The solid line in the plot shows the lattice
OWER obtained using the baseline LM and the dotted line in the
plot shows the lattice OWER obtained using the updated LM. The
OWER scores for 1-best list in Figure 1 correspond exactly to the
WER results in the second row of Table 1. This is because the WER
is computed by using the first best hypothesis generated by the ASR
system. If the solid and dotted lines in Figure 1 are extended to
include all hypotheses in the lattice, then the OWER values would
correspond exactly with the values in line 3 of Table 1. The plot in
Figure 1 demonstrates improved efficiency in that, for a given lattice
size, the OWER decreases for the updated LM by approximately 3-4
absolute percentage points.

6. SUMMARY AND CONCLUSIONS

The language model updating approach presented here for a transla-
tion domain dictation task provides a 50% decrease in test set per-

plexity and around a 29% decrease in ASR WER with respect to
performance obtained using a baseline trigram LM. The approach
provides an efficient way to incorporate knowledge of the source
language text directly in the ASR decoder by updating target lan-
guage word n-gram probabilities based on the probability of those
words as predicted by the translation model. It also provides a po-
tential mechanism for introducing new words in the ASR LM with
the help of named entity tags derived from the source language text.

Combining multiple information sources in a ASR lattice re-
scoring scenario for improving overall MAHT performance has been
investigated in [3]. It was found there that the memory and computa-
tional requirements of these techniques can become very large unless
the size of the lattices can be constrained through pruning. The 39%
improvement in oracle WER for the lattices produced by the updated
LM relative to the baseline LM suggests that, even when these lat-
tices have been aggressively pruned, they may provide a solution
space that is rich enough for these lattice re-scoring techniques to
be both efficient and effective. This is proved by the plot in Fig-
ure 1, which shows that for any given N -best hypotheses lattice, the
OWER for lattices obtained using updated LMs will be lower than
the OWER obtained when using baseline LM.
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