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ABSTRACT

This study presents keyword recognition evaluation on a new corpus
named ProfLifelLog. ProfLifel.og is a collection of data captured
on a portable audio recording device called the LENA unit. Each
session in ProfLifeL.og consists of 10+ hours of continuous audio
recording that captures the work day of the speaker (person wear-
ing the LENA unit). This study presents keyword spotting evalu-
ation on the ProfLifeL.og corpus using the PCN-KWS (phone con-
fusion network-keyword spotting) algorithm [2]. The ProfLifeL.og
corpus contains speech data in a variety of noise backgrounds which
is challenging for keyword recognition. In order to improve key-
word recognition, this study also develops a front-end environment
estimation strategy that uses the knowledge of speech-pause deci-
sions and SNR (signal-to-noise ratio) to provide noise robustness.
The combination of the PCN-KWS and the proposed front-end tech-
nique is evaluated on 1 hour of ProfLifel.og corpus. Our evaluation
experiments demonstrate the effectiveness of the proposed technique
as the number of false alarms in keyword recognition are reduced
considerably.

Index Terms— Keyword Spotting, Phone Confusion Networks,
Environment Estimation, False Alarms, Noise Robustness

1. INTRODUCTION

In this study, we introduce the ProfLifeL.og corpus which is being
collected with an intention of developing and evaluating speech sys-
tems on data captured in natural settings. The ProfLifeLog corpus
uses the LENA unit which is a portable device that can capture up to
10+ hours of audio recording in a single session. The most popular
use of the device has been to capture the language environments of
infants and young children, where the subject in question wears the
unit. Subsequently, speech processing software has been used to an-
alyze the collected data for various metrics of interest such as adult
word count, adult-child turn-taking count, child vocalization count,
TV (television) time efc. [1]. More recently, there has been an inter-
est in using the device with older children and adults with focus on
studying language acquisition in bilingual environments, vocabulary
and accent tracking in second language speakers, etc.

Data analysis for LENA would be strengthened by the use of
Keyword Spotting (KWS) technology. Since LENA recordings are
collected in real-world conditions, noisy audio also represents a ma-
jor challenge for keyword recognition. This study examines the ef-
fectiveness of the PCN-KWS (phone confusion network-keyword
spotting) algorithm for keyword recognition on ProfLifeLog data.
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PCN-KWS is a new algorithm for Keyword Spotting (KWS) that is
based on searching keywords in phone confusion networks (PCNs)
[2]. The PCN-KWS algorithm has shown good recall and precision
performance on keyword spotting tasks when applied to standard
speech corpora such as Switchboard, SPINE (Speech In Noise cor-
pus), and TIMIT. Motivated by these results, this study examines
the performance of the KWS-PCN algorithm on ProfLifeLog corpus
data which presents more challenging speech data.

Phone-based KWS algorithms are inherently prone to higher
rates of false-alarms, especially in noisy conditions. This is espe-
cially true in the ProfLifeLog corpus where speech data is captured
in a variety of real world interactions such as buying a sandwich,
calling while driving, efc. In order to mitigate the impact of false
alarms on keyword recognition performance, we propose an effi-
cient front-end environment estimation scheme which utilizes the
knowledge of signal to noise ratio (SNR), and speech-pause deci-
sions (voice activity detection) to reduce the false-alarm rate in key-
word detection. The combination of the proposed front-end environ-
ment estimation with the PCN-KWS algorithm lends noise robust-
ness to the keyword recognition system.

2. PROFLIFELOG CORPUS

The ProfLifeLLog corpus is a database of speech material collected on
the LENA unit. LENA stands for Language Environment Analysis
[10]. It has been primarily used for analyzing the language envi-
ronment of infants. The LENA unit has a small form factor and is
light enough to be carried in a shirt pocket (see Fig. 1). In our data
collection, the unit is attached to a person who then carries the unit
for the entire work day. As a result, the device captures all speech
and background data as the speaker performs his day-to-day tasks.
As a result, the collected data contains speech in a variety of back-
ground noise types ranging from very quiet (such as office) to very
noisy (such as restaurant). In general, the audio material has been
collected in natural settings where the user activity is not controlled.
Hence, the data collected offers an excellent opportunity to evaluate
speech systems on real world data. So far, the ProfLifeL.og corpus
contains 30 days of audio recording resulting in a total collection
of 300+ hours. We have also initiated the transcription effort for
ProfLifeLLog, and used 1 hour of transcribed data for evaluation in
this study. For evaluating the proposed front-end scheme in con-
junction with the PCN-KWS algorithm, we extracted two 30 minute
speech segments from the ProfLifelL.og corpus. While one segment
was recorded in a meeting-environment, the other was collected in
restaurant-environment.
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Fig. 1: Data collection using the LENA unit: A single session consists of 10+ hours of audio recording with the speaker constantly carrying
the unit. Speech is collected in a wide variety of backgrounds such as Restaurant, Office, Meeting, Walking, Driving efc.

3. PHONE CONFUSION NETWORK BASED KWS

In this section, we briefly review the PCN-KWS algorithm. In the
PCN-KWS algorithm, the speech signal is first decoded using mono-
phone HMMs, and the corresponding phone lattices are generated.
In the next step, the phone lattices are converted into phone confu-
sion networks (PCNs). Finally, the PCN-KWS algorithm is used to
search the PCNs for keywords.

It is noted that KWS algorithms based on phone lattices have
been proposed in the past [3, 4, 5]. The general approach is to search
for the phone sequence corresponding to the keyword in the lattice.
In such approaches, the likelihood of the phone sequence in the lat-
tice can be compared to a threshold to make a decision. Addition-
ally, phone substitution, insertion, and deletion rules can also be used
to account for errors in phone decoding. For example, phone con-
fusion matrices generated by comparing ASR output with ground
truth transcriptions have been used to objectively compute the like-
lihood of phone substitution, deletion, and insertion errors [6]. Sub-
sequently, the phone confusion matrices are used to re-estimate the
likelihood of phone sequences in the lattice. However, ASR lattices
are generally large and searching them can be time consuming. On
the other hand, confusion networks (CNs) are a more compact form
of speech recognition lattices, and have also been shown to deliver
lower WERSs (word error rates) in ASR (automatic speech recogni-
tion) tasks [7]. These properties of CNs make them suitable for fast
and accurate keyword searching.

The PCN-KWS algorithm searches for the phone sequence cor-
responding to the keyword in the phone confusion network. In par-
ticular, it uses the Viterbi algorithm to find the most likely occurrence
of the keyword within a PCN. However, since ASR phone-decoding
is inherently imperfect, PCNs contain a number of substitution, in-
sertion, and deletion errors. Therefore, a simple strategy such as
searching for the phone-sequence corresponding to the keyword in
the PCN realizations will be error prone. While substitution errors
are easily handled within the PCN structure (by choosing the desir-
able phone-sequence realization among alternatives), the PCN-KWS
provides additional consideration for handling insertion and deletion
errors. In particular, insertion errors are mitigated by re-interpreting

the probability of *e* (special empty node in CNs) as the probabil-
ity of self transition. The PCN-KWS algorithm also considers the
timing information of nodes while searching for valid paths within
the PCN. Finally, the algorithm also allows for phone deletion by
introducing a deletion penalty. More details of the algorithm can be
found in [2].

4. FRONT-END ENVIRONMENT ESTIMATION

The proposed front-end environment estimation combines two voice
activity detection (VAD) techniques, namely, MO-LRT VAD sys-
tem proposed by Ramirez [8] and a standard HMM (Hidden Markov
Model) based phone decoder. In our experimental studies, we have
observed that a fusion strategy that combines MO-LRT and phone-
decoder based VADs is able to deliver higher performance (up to
10% improvement in accuracy). This is the motivation behind using
a fusion strategy for VAD. The process of combining VAD decisions
is illustrated in Fig. 2. The two VAD systems work independently
on the data to produce the speech and pause likelihoods for each
frame. As shown in the figure, the MO-LRT generates the speech
and pause conditional likelihoods for the 7' frame, i.e., L%(s;) and
LR(ni), respectively. In parallel, the phone decoder is used to gen-
erate time-aligned phone transcripts for the speech signal. Subse-
quently, as shown in Fig. 2 the speech likelihoods for the vowel
frames (L™ (s;)) are assigned the normalized acoustic scores. On
the other hand, the noise likelihood for the vowel frames is assigned
0. This process is motivated by the capability of the phone decoder
to detect vowel regions in speech with high confidence. Similarly,
the noise likelihoods for noise-only frames L' (n;) are assigned the
normalized acoustic scores, and the speech likelihoods are assigned
0. For all other phone types (i.e., stops, nasals, fricatives, semi-
vowels), the noise and speech likelihoods are assigned as 0. This
reflects the ambiguity in phone decoder output where non-vowel re-
gions may not be detected with high accuracy. For the final deci-
sion, a combined speech and noise likelihood is generated by adding
the MO-LRT speech and noise likelihoods, with HMM-based speech
and pause likelihoods, respectively. In this manner, the HMM gen-
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Fig. 2: Proposed Fusion based VAD System.

erated likelihoods serve to bias the MO-LRT likelihood whenever
speech or noise is detected with high confidence. Thereafter, the log
likelihood ratio (LLR) is computed by using the combined speech
and noise likelihoods, and compared to a threshold for speech-pause
decisions. In this study, the HMM based phone decoder was trained
on broadcast news (BN) corpus.

It is important to mention that the normalized log-likelihood ob-
tained by HMM decoder for a vowel part will be assigned to each
frame in that part equally. At last normalized log-likelihood obtained
by HMM decoder and MO-LRT VAD will be added together and the
final decision will be taken based on assigned threshold. The same
procedure is used for frames detected as noise.

Once the speech-pause decision are made, the SNR (signal-to-
noise ratio) estimate for each frame is computed as follows. Let
Y (k,4) be the k' Fourier transform coefficient for the ' frame,
and let \,, (k, ) be the estimate of the noise power spectrum. Here,
An (K, 1) has been obtained by following the process described in [9].
Now, the SNR estimate for the k" coefficient and i*" frame can be
obtained as

Y (k, )|
Ao (kyi)

The SNR estimate for the frame is obtained by averaging over all
frequency bins.

(ki) = (1)

In this manner, the proposed environment estimation front-end
generates speech-pause decisions as well as SNR estimates at a
frame level. The speech-pause decisions from the environment es-
timation scheme are used to segment the signal into noisy-speech
and noise-only regions. Subsequently, the noise only regions are
discarded and not processed by the PCN-KWS algorithm. Further-
more, the SNR estimates for speech segments are now obtained by
averaging the SNR values of all frames. Speech segments with low
SNR values tend to have poorer recognition accuracy, and hence
are eliminated from further processing. In summary, the proposed
front-end technique acts as a filter, and retains only relatively clean
speech (high SNR) for keyword spotting. Therefore, the proposed
strategy should be beneficial towards lowering false-alarm rates.

5. EXPERIMENTS AND RESULTS

The ASR system used as part of the keyword recognition experiment
was trained on BN (broadcast news) corpus. The BN data was used
to train 128-mixture monophone HMMs. The same acoustic model
was also used for the HMM-decoder based VAD. Additionally, a bi-
gram phonotactic language model (LM) was also trained using the
BN corpus text transcriptions. Here, the canonical pronunciations
were used to convert words into phone sequences. The SPHINX
recognition engine was employed to generate phone lattices, and the
SRILM toolbox was used to generate the PCNs [7].

In order to evaluate the performance of our proposed VAD sys-
tem, we synthesize 30 minutes of noisy data by combining clean
speech (collected on LENA) with noise recordings of meeting and
restaurant environments (also collected on LENA). The noise and
speech signals are added to produce noisy speech at 0dB, 10dB, and
20dB SNR. We preferred this process as the ground truth annota-
tions for clean speech was easily available, and noise could be added
while controlling the SNR. As a result, the evaluation is more ob-
jective and comparable to others reported in literature. It is noted
that for KWS evaluation we have not synthesized data but used the
recordings directly from LENA.

Figure 3 shows the ROC (receiver operating characteristic)
curves for the proposed VAD system in meetings and restaurant
environments. It is observed that at 20dB SNR, the VAD perfor-
mances in both restaurant and meetings environment are comparable
and very high (approximately 95% accuracy). Additionally, a drop
in performance is observed with decreasing SNR for both envi-
ronments. Finally, the VAD performance drops more significantly
in the restaurant environment. This is expected as the restaurant
environment is more challenging.

In order to allow comparison between the PCN-KWS algorithm
and other KWS algorithms, we first present the evaluation of the
PCN-KWS system on the TIMIT corpus. For this experiments, we
followed a keyword recognition setup very similar to that presented
in [3]. We chose 200 unique keywords of 6-phone length from the
TIMIT test corpus, with a total of 644 occurrences in the database.
We eliminated sal and sa2 sentences from our evaluation. Figure
4 plots the average false-alarms per keyword against miss-rate for
the TIMIT evaluation. The evaluations results show very low false-
alarm rates (<11 average false alarm per keyword) for low miss-
detection rates (<9%). In fact, the results obtained in this experiment
are comparable to the evaluation results in [3]. Additionally, the
PCN-KWS system has been evaluated on Switchboard and SPINE
corpora, and the details of the performance can be found in [2].

For evaluation of ProfLifeL.og data, we chose 20 unique key-
words with a total of 153 occurrences. The total amount of audio
material used was 1 hour long, and was chosen in equal proportion
from two different environments, namely, meetings and restaurant.
The restaurant environment was relatively more noisy, and consisted
of babble and cocktail party noises. The meetings environment was
relatively cleaner. Figure 4 shows the keyword recognition perfor-
mances in restaurant and meetings environment, respectively. From
Fig. 4, it is observed that the keyword recognition performance on
ProfLifeLLog data is lower than TIMIT data. The reduced perfor-
mance reflects the challenges in ProfLifeLog data, i.e., spontaneous
speech in natural settings. Additionally, it is observed that the key-
word recognition performance in meetings environment is superior
to that in restaurant environment. Additionally, the use of environ-
ment estimation in both the meetings and restaurant data is beneficial
towards improving keyword recognition accuracy. From data anal-
ysis, it was discovered that in the meetings data, the environment
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Fig. 3: Proposed VAD performance on ProfLifeLog in meetings and
restaurant environments and 0dB, 10dB, and 20dB SNRs.

estimation algorithm is able to separate pauses as well as speech of
secondary speaker (person talking to the speaker wearing the LENA
unit). Here, eliminating secondary speaker data as well as back-
ground leads to improved keyword recognition accuracy. A sim-
ilar effect was also observed in restaurant data. However, the ef-
fectiveness of separating background and secondary speaker from
primary speaker is diminished in restaurant setting owing to higher
background noise. Therefore, environment estimation benefits meet-
ings more than restaurant. Overall, by using the environment estima-
tion scheme we can move KWS accuracy in meetings environments
to TIMIT-like performance, but more work is required to improve
performance in restaurant environment (or non-stationary low SNR
noise environments in general).

6. CONCLUSION

A new corpus called the ProfLifel.og corpus has been presented.
In this new corpus, speech data has been captured using a portable
audio recording device called the LENA unit. ProfLifeLog corpus
contains long continuous recordings (10+ hours) per session where
the day-to-day activity of speakers is captured. This study has also
presented keyword recognition evaluation on the ProfLifel.og cor-
pus. Particularly, the study has proposed a new front-end environ-
ment estimation algorithm that can generate speech-pause decisions
along with SNR (signal to noise ratio) estimates. It has been shown
that when this new technique is used in conjunction with the PCN-
KWS (phone confusion network-keyword spotting) algorithm, the
number of keyword false-alarms can be dramatically reduced. The
study presents the feasibility of extracting useful information from
long duration collections which may open new avenues in speech
and language research.
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