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ABSTRACT

Stochastic turn-taking models use a truncated representation of past
speech activity to specify how likely a speaker is to talk at the next
instant. An unanswered question in such modeling is how far back
to extend the conditioning context. We study this question using
Switchboard (English, telephone) and Spontal (Swedish, face-to-
face) conversations. We also explore whether to trade off preci-
sion with range when moving backward in the history. We find that
(1) a nearly logarithmic compression of history is optimal, for both
speaker and interlocutor; (2) the absolute duration of the condition-
ing context is at least 7 seconds; and (3) the compression scheme
generalizes remarkably well across the two different corpora.

Index Terms— Turn-taking, conversational speech, diarization,
dialogue, speech activity.

1. INTRODUCTION

Stochastic turn-taking models use statistics, as opposed to rules, to
predict when speakers talk versus not talk in conversation. The ap-
proach has roots in early studies [1, 2, 3] that conditioned predictions
on information about only past speech activity (no words or other lin-
guistic information), and showed that turn-taking can be viewed as
a Markovian process. Initial work looked only at the speech activity
patterns of a single talker [1]; later work expanded the modeling to
include an interlocutor [2, 3].

Such models use only binary speech activity as features. They
exclude words, prosody, and gestural or other visual cues. In this re-
gard they are obviously too simplistic to reflect the complex process
of human conversation. They also suffer from other disadvantages,
notably practical limitations on model complexity given available
data to train the model. Nevertheless, the models offer a number of
advantages for the study of conversation and for real-time model-
ing of incipient speech in conversational speech applications. First,
even though only speech activity is used, these features correlate
with discourse-relevant information. For example, very short re-
gions of speech between pauses correlate with backchannels such
as “uh-huh”. Speech activity features are both simple to compute
and privacy-sensitive. Furthermore, they can be applied across cor-
pora in which conversations may differ in topic, type of interaction,
and choice of language. Finally, the models can be used as prior
knowledge to constrain search in nearfield speech activity detection
systems, in farfield speaker diarization systems, and in real-time di-
alogue systems for low-latency prediction.

Recent years have seen renewed interest in such models [4, 5, 6].
Yet an important question that remains unanswered is just how far
back to look. It appears that whenever increasingly older context is
added, models either continue to improve, or become intractable due
to lack of sufficient data to train higher-order models [6].

The goal of this paper is to address the question of how far back
to extend the history, to best predict upcoming speech. In asking this
question, we also consider the possibility that the precise temporal
location of conditioning events becomes fuzzy as those events re-
cede into the past. Should that turn out to be true, the sensitivity of
a model to variations in timing would not be uniform but would de-
cay monotonically, making it possible to obtain greater range at the
expense of precision. These concerns have implications for human
processing models, particularly for models of attention allocation.
They may also have impact in speech applications, for example in
the real-time allocation of resources in dialogue systems and in the
design of features that capture lexical or prosodic information.

Our investigation is carried out using a fixed modeling frame-
work and two different corpora, described in Section 2. We inten-
tionally chose corpora that differ in language, style, and presence of
visual cues. Model performance with history compression is com-
pared to that using standard history truncation in the experiments of
Section 3, for both within-corpus and cross-corpus prediction. We
discuss some implications and conclude in Section 4.

2. METHOD

2.1. Data and Segmentation

Our first corpus is the Switchboard-1 Corpus [7], as re-released in
1997. It consists of 2435 telephone conversations, each approxi-
mately 10 minutes in duration. We divide the data into three speaker-
disjoint sets, such that our TRAINSET, DEVSET, and TESTSET con-
sist of 762, 227, and 199 conversations, respectively. During this
division process, it was not possible to allocate 1247 conversations
because their two speakers had already been placed in different sets.
Since we are modeling speaker state, reference speech/non-speech
segmentations were used. These were obtained from the available
forced alignments [8] for each conversation side.

To relate the study to previous work [6], we compare the
Switchboard-1 Corpus with the Spontal Corpus [9]. The latter
consists of 30-minute face-to-face conversations in Swedish, with
each conversant participating in only one conversation. The Spontal
training, development, and test sets consist of 23, 6, and 6 con-
versations, respectively, as in [6]. Only an automatically produced
segmentation is available, produced as described in [10].

2.2. Stochastic Modeling

We use the modeling framework described in [6]. The segmentations
for the two sides to each conversation are time-aligned and sampled
at a non-overlapping frame step of 100 ms. This corresponds ap-
proximately to the duration of half of a syllable, and ensures that no
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speech is discarded. The process results in a discrete 2 × T binary-
valued matrix, or chronogram, where T is the number of 100-ms
frames in the conversation. A chronogram cell has the value � if the
speaker represented by the cell’s row spoke for the majority of the
interval corresponding to the cell’s column, and � otherwise.

Chronograms are treated as vector-valued Markov processes, al-
lowing us to factor their likelihood into a product of conditional n-
gram likelihoods. Each such likelihood factor can be further de-
composed into two factors, one corresponding to each of the two
conversants. We build two types of model: (1) conditioning each
participant’s speech activity only on that participant’s past speech
activity, and (2) conditioning each participant’s speech activity on
the past speech activity of both participants. We refer to these as un-
conditionally independent (UI) and conditionally independent (CI)
models, respectively.

Maximum likelihood estimates for all n-gram probabilities are
inferred using training data, and are then smoothed recursively using
linear interpolation with lower-order n-gram models. The smooth-
ing, described in detail in [6], uses a global relevance parameter op-
timized on development data.

Models are assessed using the average negative log-likelihood
over every cell, in each column of each row of each test set chrono-
gram. This measure is identically the cross entropy rate of the
Markov process assumed to produce the chronograms, given a
trained model. Cross entropy rates in this work are expressed in bits
per 100-ms frame; a value of unity would indicate that chronograms
are completely random, whereas a value of zero that they are al-
ways � or always �. The difference between 1st-order UI and CI
models is significant: in a speech activity detection experiment on
the rt05s eval and rt06s eval data sets, modeling speakers
as not independent reduced NIST error rates by 40% relative (cf.
Figure 11.29 in [11]).

3. RESULTS

3.1. Standard Representation of History

We apply the modeling described above to the Switchboard-1 (Swb-
1) data, constructing UI and CI models with τ ∈ [1, 10] frames of
context. The results are shown in Figure 1, in red. Also shown, in
blue, are curves obtained using the Spontal corpus as in [6].
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Fig. 1. Cross entropy rate as a function of the number of 100-ms
frames in the conditioning context. UI: only target speaker in history,
CI: target speaker plus interlocutor in history.

The main observation of interest in Figure 1 is that all curves

exhibit monotonically decreasing cross entropy rates as the condi-
tioning context grows by one 100-ms frame at a time. It appears that
at 1 second, after 10 frames have been observed, the cross entropy
rate continues to fall.

There are also some interesting differences between Switchboard-
1 and Spontal conversations. For example, when the interlocutor
is ignored (i.e., the UI condition), conversants’ speech activity ap-
pears more difficult to predict in Switchboard-1 than in Spontal.
This is true for any model order. Evidently, the past durations and
sequencing of one’s own talkspurts and gaps exhibit more variation
in Switchboard-1 than in Spontal.

On the other hand, we believe that the nearly identical perfor-
mance of the CI model for both corpora is largely a coincidence.
We feel the shape of the curve is meaningful, but the absolute per-
formance depends somewhat on the data. Individual speakers and
speaker pairs have different overall rates of speech and overlap
frames — a topic we are exploring in separate work. But to briefly
illustrate this here, Figure 2 shows results for 10 randomly selected
TESTSET conversations. It indicates that there is a wide band
of variation around the mean shown in Figure 1, while retaining
roughly parallel trends.
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Fig. 2. Cross entropy rate as a function of the number of 100-
ms frames in the conditioning context, for 10 randomly selected
Switchboard-1 conversations, labeled “A” through “J”.

We note that it occasionally happens that the CI curve for one
conversation is higher than the UI curve for another. Also, the UI
and CI curves are not decreasing with τ for all conversations; occa-
sionally a given curve rises only to fall again for larger τ . However,
it appears to always be the case (not shown) that for any given con-
versation, the CI curve lies below the UI curve.

3.2. History Compression

We now investigate an alternative to conditioning on a uniformly dis-
cretized past. Any proposed alternative involves a trade-off among
3 factors: (1) the absolute duration of the modeled context, (2) the
granularity with which one tiles that context, and (3) the number of
degrees of freedom of the model. In the current work, we keep the
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model order fixed1. The question then becomes one of allocation of
model resources to yield optimally predictive conditioning. Based
on Figure 1, we expect that activity older than 1 second may help.
To expose a model to such older events, we need to either skip earlier
frames or to map frames in some manner onto larger windows.

In this paper, we choose to merge rather than skip frames, in-
dependently for the chronogram rows corresponding to the target
speaker and the interlocutor. In mapping adjacent frame values to
a single value, we employ majority voting. Ties for windows that
subsume an even number of frames are resolved by assigning � if at
least half of the subsumed frames are �, and � otherwise2.

To determine the optimal geometry of mapping windows, we
performed an automated search as described in Algorithm 1. Each
evaluation of cross entropy rate involves training a model using
TRAINSET, smoothing parameter optimization using DEVSET, and
model scoring using TESTSET; only Switchboard-1 data was used.

Algorithm 1 Search for a windowing policy given 10 windows
1: current frame index: τ = 1
2: number of found windows more recent than τ : M = 0
3: found window sequence W = ∅
4: while M < 10 do
5: for m = 1 to ∞ do
6: posit 10 − M windows of m frames at ≥ τ

7: ξ [m] = cross entropy rate
8: end for
9: optimal window size at τ : m∗ = arg max

m
ξ [m]

10: for i = 1 to 10 − M do
11: hypothesize i windows of size m∗ at index τ

12: consider the advance τ ′ [i] = τ + i · m∗

13: for n = m∗ + 1 to ∞ do
14: posit 10 − M − m∗ windows of n frames at ≥ τ ′ [i]
15: ξ′ [n] = cross entropy rate
16: end for
17: cross entropy rate at τ ′ [i]: ξ∗ [i] = maxn ξ′ [n]
18: end for
19: optimal number of windows at τ of size m∗: i∗ =

arg max
i
ξ∗ [i]

20: place i∗ windows of size m∗ in W

21: τ = τ ′ [i∗]
22: M = M − m∗

23: end while

The algorithm starts at the instant immediately preceding the
predicted frame, and considers tiling the history with 10 uniformly
wide windows. After finding the best uniform window width for
the history beyond the current instant τ , it considers retaining only
a few windows of that width, windowing frames beyond those with
a larger uniform width. It picks the window width m∗ and number
of frames i∗ which yield the lowest cross entropy rate, increments τ

with m∗ · i∗, and continues until all 10 windows are specified. As
can be seen, a shrinking in window size as the algorithm proceeds
is never entertained. However, nothing prevents the algorithm from
settling on uniform windowing or on piecewise uniform windowing.

Applying Algorithm 1 to only the target conversant’s history
(UI model) led to a final sequence of windows with durations {

1Fixing context size, to instead compare compressed versus uncom-
pressed tiling, is complicated by issues of smoothing; the rightmost UI and
CI models in Figure 1 are already an 11-gram and a 21-gram, respectively.

2We allow � to dominate � because we treat speaking as the marked
condition. In particular, conversants appear to generally avoid speaking si-
multaneously but do not avoid not-speaking simultaneously.

100 ms, 100 ms, 100 ms, 200 ms, 400 ms, 500 ms, 500 ms, 1000 ms,
1000 ms, 3300 ms }, from most recent to least recent. The total
history duration is 7.2 seconds. Keeping this sequence fixed, Algo-
rithm 1 was then applied to the interlocutor’s history, relevant to CI
models. The found sequence consists of windows with durations {
100 ms, 100 ms, 100 ms, 300 ms, 300 ms, 300 ms, 900 ms, 2000 ms,
2000 ms, 2000 ms }. The total resulting duration in the interlocutor
row is 8.1 seconds. Both windowing policies, shown in Figure 3 for
comparison, retain the maximum available precision of 1 frame for
the first three windows, and then widen windows to achieve a nearly
logarithmic taper which terminates at around 7.5 seconds.

2.0 4.0 6.0 8.0
0

0.5

1
target conversant
interlocutor

Fig. 3. Results of empirical stepwise search to find an optimal win-
dowing policy given 10 windows for target conversant (blue) and
interlocutor (red), as a function of time (along the x-axis) look-
ing backwards. Height along the y-axis is the width (in number of
frames) of the underlying policy window. Interlocutor policy search
starts with best target speaker policy already in place.

3.3. Multi-Corpus Comparison

We now compare the effect of the optimized windowing policies
on the curves shown in Figure 1, which use standard representa-
tions of history. The comparison for the Switchboard-1 Corpus is
shown in Figure 4(a). As can be seen, both UI and CI models benefit
from more conditioning history, at every model complexity explored
except for 1, 2, and 3 degrees of freedom. This is of course be-
cause both optimized window sequences retain only a single frame
in each of their first three windows, making the compressed and un-
compressed schemes identical when only a small number of model
parameters is available.

Since the window sequences were found by evaluating cross en-
tropy rate on TESTSET, Figure 4(a) does not offer a truly indepen-
dent assessment. It also doesn’t let us know how well the policy
generalizes to other types of data. To investigate these questions, we
apply the window sequences found using Switchboard-1 data to the
Spontal corpus, in Figure 4(b). Models are trained, tuned, and eval-
uated on Spontal data only, making the resulting curves comparable
to those shown for Spontal in Figure 1. As for the Switchboard-
1 curves in Figure 4(a), history compression is seen to be benefi-
cial. In fact, a compressed-history UI model achieves parity with an
uncompressed-history CI model, at the right of the figure.

Finally, we apply the window sequences as obtained using
Switchboard-1 data, as well as the models trained and tuned to
the Switchboard-1 TRAINSET and DEVSET, to the Spontal test
data. The results are shown in Figure 4(c). We observe that the
UI curve exhibits approximately the same profile as when mod-
els are trained on Spontal, but with gentler slope. Interestingly,
the CI curve is above the UI curve. This tells us something about
corpus differences: models of interlocutor behavior obtained using
Switchboard-1 are actually not appropriate for Spontal data. What is
relevant to the current work is that despite the reversal of curves due
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(a) train: Swb-1, test: Swb-1 (b) train: Spontal, test: Spontal (c) train: Swb-1, test: Spontal

Fig. 4. Effect of logarithmic history compression (LHC) on smoothed n-gram model performance. Number of mapped windows along the
x-axes, cross entropy rate in bits along the y-axes. Points along LHC curves annotated with total history duration, in seconds. UI: only target
speaker in history, CI: target speaker plus interlocutor in history. Curve color corresponds to that of the test set in Figure 1.

to training n-gram counts on different-domain data, history com-
pression determined using different-domain data leads to consistent
improvements, for both the UI and CI curves.

4. DISCUSSION & CONCLUSIONS

The results of the previous section were obtained using speech activ-
ity features, and relate to the prediction of speech activity using those
same features. This makes sense: a real-time task may find features
that take more time to compute less useful. Nevertheless, it is in-
teresting whether compression of a 7- or 8-second history should be
applied when designing lexical, prosodic or other linguistic features,
for prediction and for other tasks.

The segmentation for Switchboard-1 (but not for Spontal) was
obtained using forced alignment [8]. This obviously corresponds to
a better segmentation than would be available in a real prediction
system. However, just as in language modeling in automatic speech
recognition (ASR), the goal here was to capture the true distributions
of n-grams; language models in ASR are not trained using hypothe-
ses. On the other hand, predicitons based on a conditioning context
built using detected rather than reference speech activity may be-
have differently, and may merit the design of a different windowing
scheme which is more tolerant of frame errors.

The generalization of the modeling framework, inclusive of his-
tory compression, to other corpora, suggests that it may now be pos-
sible to conduct extensive comparisons of turn-taking across multi-
ple languages, speaking styles, and group sizes in a quantifiable way.
The modeling framework could also be applied in an analytical man-
ner to detect whether — from a turn-taking point of view — spoken
dialogue systems behave as humans do in the same settings.

In summary, we find that speech activity as far back as 7 sec-
onds, of both the target speaker and their interlocutor, is relevant to
the prediction of target speaker’s incipient speech. This limit was
discovered using a stochastic n-gram modeling framework by allo-
cating a fixed number of model parameters to achieve an optimal
trade-off between history precision and range. The resulting history
compression profile is shown to be nearly logarithmic, and to gener-
alize across conversational corpora in different languages and styles.
The approach may be applicable to other modeling frameworks, may
yield more accurate and faster detection and prediction systems, and
should inform the design of other feature types which describe recent

behavior.
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S. Strömbergsson, and D. House, “Spontal: A Swedish
spontaneous dialogue corpus of audio, video and motion
capture,” in Proc. LREC, La Valletta, Malta, May 2010,
ELRA, pp. 2992–2995.

[10] M. Heldner, J. Edlund, A. Hjalmarsson, and K. Laskowski,
“Very short utterances and timing in turn-taking,” in Proc. IN-
TERSPEECH, Firenze, Italy, 2011, pp. 2837–2840.

[11] K. Laskowski, Predicting, Detecting and Explaining the Oc-
currence of Vocal Activity in Multi-Party Conversation, Ph.D.
thesis, Carnegie Mellon University, Pittsburgh PA, USA, 2011.

4940


