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ABSTRACT

This work addresses the problem of developing a domain-independent
binary classifier for a test domain given labeled data from several
training domains where the test domain is not necessarily present
in training data. The classifier accepts or rejects the ASR hypoth-
esis based on the confidence generated by the ASR system. In the
proposed approach, training data is grouped into across-domain
clusters and separate cluster-specific classifiers are trained. One of
the main findings is that the cluster purity and the normalized mutual
information of the clusters are not very high which suggests that the
domains might not necessarily be natural clusters. The performance
of these cluster-specific classifiers is better than that of: (a) a sin-
gle classifier trained on data from all the domains, and (b) a set of
classifiers trained separately for each of the training domains. At
an operating point corresponding to low False Accept, the Correct
Accept of the proposed technique is on an average 2.3% higher than
that obtained by the single-classifier or the individual train-domain
classifiers.

Index Terms— confidence measures, K-means clustering,
cluster-purity, IVR systems

1. INTRODUCTION

In various Interactive Voice Response (IVR) systems, an Automatic
Speech Recognition (ASR) system is used to automatically recog-
nize and interpret users’ speech inputs and decide the future course
of interaction.

In such cases the reliability of the ASR hypothesis needs to be
quantified. A reliability measure is generated by computing a set of
ASR-confidence features and combining them. Some of the com-
mon ASR-confidence features are normalized acoustic likelihood
scores, LM or LM-backoff scores, N-best based measures such as
difference in the top N-1 adjacently ranked recognition scores, word
posterior probabilities duration-based features such as HMM state
duration, phoneme duration and/or word duration. Computation of
posterior probabilities is a non-trivial problem and several approxi-
mations have been proposed (c.f. [1]). A statistical hypothesis test-
ing framework referred to as the utterance verification framework
is also studied extensively to address the ASR-confidence-based ac-
cept/reject decisions (c.f. [2]). Please refer to [3] for a compre-
hensive review of various features and approaches to quantify the
reliability of the ASR hypothesis.

The values of these features for acceptable hypotheses vary
across different domains. For example, the number of parallel paths
in an ASR system used for accepting credit card details would be
much smaller than those in an ASR system used for accepting stock
market details. The difference in the best and the second-best hy-
pothesis is likely to be much lower for a system with many parallel
paths than a system with fewer parallel paths. This suggests that the

classifier to make an accept/reject decision based on these features
should be retrained across domains.

In the most ideal situation, a different classifier is trained for ev-
ery test domain. This assumes availability of substantial amount of
labeled data for every test domain. Most deployed systems, however,
find it inconvenient to retrain a classifier for different test domains
for various practical reasons. In many situations, there is little or no
labeled data for several test domains. The requirement of labeled
data also increases the preparation period of a deployment cycle.
A common practice is to use the same classifier irrespective of the
domain of the test utterance. To reduce the sensitivity to the train do-
main, the classifier is typically trained on data from several different
domains.

An obvious question arises: Is there a better, more systematic
training approach that can utilize the labeled data from different
training domains to improve the performance on unseen domains?

Machine Learning literature is rich with various frameworks that
try to address this issue, also referred to as the Domain Adaptation
problem [4]. The goal in Transfer Learning framework [5] is to uti-
lize information from a multitude of source domains to improve the
performance on a target domain. In [6], the transfer learning frame-
work is applied in a Reinforcement Learning setup to learn rules
from existing domains that can easily be applied to target domain(s).
In [7], small amount of labeled data from the target domain is used
to identify training instances that match the distribution of the tar-
get domain. A new classifier is built with higher weights on these
’similar’ instances. Sample selection bias approach is proposed in
[8] where the requirement of labels on the data from the target do-
main is relaxed. The objective in multi-task learning [9] is to mine
for commonalities across multiple domains and learn all the domains
simultaneously.

While all of the above methods expect a certain amount of data
from the target domain (either labeled or unlabeled), our focus in the
current work is to develop a technique that performs efficiently even
when the amount of data from the target domain is not enough to
reliably estimate any statistic of the target domain. In our companion
paper [10], we apply the Transfer Learning framework to the current
problem.

In the current work, we propose an across-domain data-driven
clustering approach where data from different Training domains is
clustered into a pre-defined number of clusters. The assumption is
that there are a few features such that their class-specific distribution
is independent of the domain to which their corresponding utterances
belong. Indeed, we show that the purity and normalized mutual in-
formation of these across-domain clusters with respect to the training
domains is low. A separate binary classifier is trained for each clus-
ter. For a given test utterance, the closest cluster is identified and the
corresponding classifier is used to make the decision.

As part of comparative analysis, the proposed approach is com-
pared with: (a) a single-classifier approach where all the training
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data is treated as a single cluster and a binary classifier is trained,
and (b) a domain-specific classifier approach where a separate clas-
sifier is trained for each domain and the classifier corresponding to
the closest one is chosen for evaluation. The implicit assumption
here is that features from any particular domain occupy a subspace
which is largely non-overlapping with the subspaces of other do-
mains. We show that the data-driven clustering approach outper-
forms the single-classifier and domain-specific classifier technique
for all the test domains evaluated.

Note that if features from different domains indeed occupy very
different subspaces then data-driven clustering should also be able
to assign separate clusters to each of the different domains.

2. ACROSS-DOMAIN CLUSTERING

In the proposed approach, the training data from all the training do-
mains is clustered into K clusters using the K-means algorithm [11].
The initial K centroids are chosen in such a way that each centroid is
reasonably far from the other centroids. Careful choice of the initial
centroids is critical as the clustering output is quite sensitive to ini-
tialization. In the current approach, the centroid of the i-th cluster is
chosen as follows: distance of all the instances from the (i-1) cluster
centroids is calculated. N instances that are farthest from all these
(i-1) centroids are short-listed and one of them is randomly picked
as the centroid for the i-th cluster. The centroid for the first cluster
(i=1) is randomly chosen. Short-listing N farthest instances, instead
of picking the one farthest instance, reduces the chances of picking
outliers as potential centroids. Euclidean distance is used as the dis-
tance measure throughout this work. Note that a direct consequence
of using Euclidean distance is that the cluster boundaries will be
hyper-spheres. Although, the K-means clustering process is known
to always converge, we allow for termination either when number
of iterations crosses a certain number or when the cumulative dif-
ference in the centroids across consecutive iterations falls below a
certain threshold. The clustering algorithm was run a few times with
different initial centroids. The resultant centroids were similar across
different runs indicating that the objective function for the current
scenario might approximately resemble a convex function and thus
less sensitive to initialization.

One of the issues that needs to be addressed is deciding K: the
number of clusters. While a reasonable guess is to let K to be
equal to the number of different domains in the training data, we
also tried a few values in the vicinity. A few post-clustering refine-
ments were also explored: (a) clusters with number of instances less
than a certain percentage of the total number of training instances
are discarded, (b) two clusters are merged if the distance between
their centroids is less than a certain threshold and if the label of the
majority class is the same in both the clusters. The second condition
for merging ensures that clusters which capture class-specific feature
distribution are not merged.

A separate binary classifier is trained for each cluster. During
evaluation, the input test instance is assigned to the cluster whose
centroid is the closest to the test instance. The classifier trained
for the chosen cluster is used to classify the instance. This method
of assigning the test instance to a single cluster and discarding all
the other clusters can be thought of as hard-decisioning. A soft-
decisioning approach is also explored where the test instance is
classified using classifiers trained for each of the clusters. The
contribution of each classifier’s decision in the final decision is in-
versely proportional to the distance of the test instance from the
corresponding cluster centroid. If the decisions from the K clusters
are [c1, c2, . . . , cK ] (note that ci = ±1) and the corresponding

Table 1. Purity and NMI for data-driven clusters for various K val-
ues. ’as-is’ indicates the clusters obtained by the K-means algorithm.
’post-clust’ indicates the clusters obtained after post-clustering re-
finements described in Section 2

purity NMI

K as-is post-clust as-is post-clust

5 0.277 0.277 0.203 0.203
10 0.299 0.283 0.197 0.196
12 0.314 0.289 0.214 0.211
14 0.324 0.291 0.227 0.211
15 0.322 0.293 0.211 0.213
21 0.338 0.294 0.213 0.215

distances are [d1, d2, . . . , dK ] then these distances are converted
to weights as wi = exp(−di/D) where D is the maximum of
[d1, d2, . . . , dK ]. The above transformation ensures that closer clus-
ters get a higher weight and thus a higher say in the final decision.
The final decision Cf is then computed as:

Cf = sign[

P
wi ∗ ciP

wi
]

Soft-decisioning reverses the hard-decision in situations where more
than one clusters are at similar distances from the test utterances and
the decision made by the closest cluster is in minority as compared
to the decision made by the other close clusters.

2.1. Cluster analysis

In the current work, purity and normalized mutual information mea-
sures are used to understand the composition of the clusters in terms
of individual domains. Purity is computed as follows: Every in-
stance in a cluster is assigned a label corresponding to the domain
which is most frequently present in the cluster. Purity, which is de-
fined as the accuracy of this assignment, is the ratio of numbers of
instances with correct domain assignments and the total number of
instances. Situations where every cluster contains instances from
a single (and possibly different) domain would lead to a purity of
1. On the other hand, situations where every domain is spread out
across every cluster would lead to a very low purity. Typically, high
purity can be achieved by increasing the number of clusters. For
example, the extreme case of forming a separate cluster for every
instance would lead to a purity of 1. A different measure that works
similar to purity but penalizes high number of clusters is Normalized
Mutual Information (NMI). NMI is defined as:

NMI(D, C) =
I(D; C)

[H(D) + H(C)]/2

where D is the set of domains, C is the set of clusters, I(D; C) is
the mutual information between the set of clusters and the set of do-
mains, H(D) is the domain entropy and H(C) is the cluster entropy.
The cluster entropy term in the denominator increases as the number
of clusters increases thus penalizing high number of clusters.

The composition of the across-domain clusters at various K val-
ues, as indicated by purity and NMI, is presented in Table 1. Low
values of purity and NMI confirm that the domains do not naturally
form clusters by themselves and that there is a substantial spread of
every domain across clusters. One other interesting observation to
be made from the table is that the purity and the NMI values for
the post-clustering refinement cases are very similar to each other
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irrespective of the initial K value. This suggests that irrespective of
the starting value of K, the post-clustering refinement steps lead to
a near-steady-state clustering output. We have observed that more
number of clusters are merged/discarded at higher values of K.

3. EXPERIMENTS

3.1. Database

The data used in this work consists of 13 domains spanning a wide
range of perplexity and fan-outs such as ’credit card numbers’ do-
main which has a smaller fanout to ’last names’ domain which has
a relatively large fanout. Total number of instances is 64,052 with
substantial representation from each of the domains: the number of
instances for individual domains vary from 2035 to 8477. The bi-
nary labels for the training and the test data were assigned by human
experts where a positive label indicates the ASR output should be
accepted and a negative label indicates the ASR output should be
rejected. Total number of instances with positive labels (i.e., accept)
is 51,621 and number of instances with negative labels (i.e., reject)
is 12,431. The experiments were carried out in a round-robin leave-
one-out fashion where every domain is used as the test domain once
with all the other domains forming the training domains.

3.2. Experimental Setup

The confidence features used for the clustering and for classifier
training include: (1) the difference in the scores of the best and
the second-best, (2) the difference in the scores of the best and the
third-best, (3) the difference in scores of the best and a phone-loop
garbage model which captures hesitations and disfluencies, (4) av-
erage acoustic score of the decoded phones, (5) the percentage of
frames recognized as silence, (6) number of phones in the decoded
utterance. Each of these features is individually normalized so that
the dynamic range is restricted to [0 − 1] in the training data. The
normalized feature ni (where i is the dimension) is given by:

ni =
xi − mini

maxi − mini

where xi is the corresponding original feature, maxi is the maxi-
mum value of the feature in the training data and mini is the mini-
mum value.

Number of clusters, K, was varied from 5-21. N , the number
of farthest instances short-listed is set to 100. Maximum number of
iterations of the K-means algorithm was set to 500 and the terminat-
ing threshold on cumulative difference in centroids across consec-
utive iterations was set to 0.001. The classifier used is the WEKA
implementation [12] of the logistic-regression classifier [13].

3.3. Evaluation Metric

The performance of the overall classification task is evaluated us-
ing the False Accept (FA) and Correct Accept (CA) metrics. FA is
defined as the ratio of number of negative-labeled instances which
the classifier predicts as positive (i.e., accept) to the total number of
negative-labeled instances. CA is defined as the ratio of number of
positive-labeled instances which the classifier predicts as positive to
the total number of positive-labeled instances. FA and CA are typi-
cally multiplied by 100 to present them as percentages. The FA rate
is controlled by varying the threshold on the ASR-confidence above
which the ASR outputs are accepted. This also leads to the Receiver
Operating Curve (ROC) which is used to compare the performance

Table 2. Average CA values for FA of 2,3 and 4%. The four meth-
ods compared are: (A) Matched-condition; (B) single-classifier; (C)
individual-domain; (D) data-driven clustering for K = 12;

domain (A) (B) (C) (D)

1 54.0 48.4 37.7 49.9
2 64.4 58.4 53.8 63.2
3 67.0 61.4 58.8 66.5
4 97.4 93.3 92.7 92.0
5 98.4 98.0 94.6 98.2
6 27.1 20.5 17.1 19.4
7 50.5 43.6 36.3 45.0
8 33.2 26.6 46.3 44.8
9 23.1 20.4 17.3 21.1
10 97.3 95.5 85.5 94.9
11 80.7 81.7 66.8 80.4
12 51.7 48.0 42.5 48.0
13 96.7 95.3 92.6 96.4

average 64.7 60.8 57.1 63.1

of different techniques at various FA/CA values. The metric used by
the deployment team is the average of CA values corresponding to
FA values of 2-, 3- and 4%.

3.4. Baseline Techniques

The performance of the data-driven clustering technique is compared
with the following baseline setups:

Single-classifier: In this setup, data from all the training do-
mains is grouped together and a single classifier is trained. This
is the setup that current deployments employ.

Train-domain classifiers: In this setup, a separate classifier is
trained for each train domain. Given a test utterance, the closest train
domain is identified by computing the distance between the utterance
and the centroids of each of the train domains. The classifier trained
on this closest domain is used to classify the test utterance.

The performance of the proposed technique is also compared
with the ideal match-condition case where a separate classifier is
trained for each test domain using data from the same domain. Re-
sults for this condition are presented on 10-fold cross-validation.

4. RESULTS

Table 2 compares the average CA values at FA of 2, 3, and 4% for
each of the domains using the different techniques described above.
As expected, the performance of the matched-condition is superior to
all the other approaches in all but one domains. The performance of
the individual-domain case is much inferior to that of the matched-
condition or the single-classifier cases.

The performance of the proposed across-domain clustering was
evaluated for various number of clusters, with and without the post-
clustering refinements, and with hard- and soft-decisioning. For
most of these scenarios, an improvement in performance is observed
as compared to that of the single-classifier case. In many cases, the
combination of post-clustering refinements and soft-clustering im-
proves the performance as compared to when neither of them is used.
These improvements are only about 0.5% though. The best average
performance across all domains, however, is for the 12-cluster, no
post-clustering refinements and hard-decisioning case. In rest of the
paper, results only from the 12-cluster case are presented. As can be
inferred from Table 2, the performance of the 12-cluster case is better
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Fig. 1. Comparison of ROC for domain 3 from Table 2 for vari-
ous methods: (a) matched-condition (black dotted-line); (b) single-
classifier (solid blue line with circles); (c) individual-domain classi-
fier (yellow line with triangles); (d) proposed across-domain cluster-
ing with K = 12 (red line with squares);

Table 3. Comparison of Average CA values for FA of 2,3 and 4%
when number of training domains (NT ) is varied; ’std-dev’ implies
standard deviation. (Test domain is domain-2 from table 2)

NT
single-classifier proposed method

avg-CA std-dev avg-CA std-dev

1 26.2 25.9 26.2 25.9
3 44.3 19.7 45.7 17.7
5 46.9 14.5 56.6 9.4
7 48.5 9.1 56.4 6.8
9 56.7 3.2 61.9 4.6

10 57.4 2.5 62.9 1.3
12 58.4 - 63.2 -

than that of the single-classifier or the individual-domain technique
and comes very close to the performance of matched-condition case
for many domains. The CA value averaged across all the domains
for the match-condition case is 64.7% while it drops to 60.8% for
the single-classifier case. The proposed 12-cluster case bridges this
gap by about 58.9% [= (63.1 − 60.8)/(64.7 − 60.8)].

The effect of the amount of training data on the performance of
the different techniques is analyzed next. To that effect, the number
of training domains (NT ) is gradually increased from 1 to 12. For
example, for NT = 3, any 3 domains are chosen from the available
12 domains to train classifiers. There are

`
12
3

´
such possibilities.

20 random combinations are chosen and the performance averaged
across the combinations. Table 3 presents the average CA values
when NT is varied from 1 to 12. The test domain is domain-2 from
Table 2. The standard deviation in the performance across the 20
combinations is also presented. Note that, as expected, increase in
NT increases the performance of the single-classifier as well as the
proposed technique. The deviation in performance across the multi-
ple combinations also drops as NT is increased. Also, note that the
performance of the proposed technique is always superior to that of
the single-classifier case implying that the proposed across-domain
clustering better utilizes the available data.

Figure 1 compares the ROC for the single-classifier, match-
condition, individual-domain and the 12-cluster case for domain 3
of Table 2. Note that the ROC for the 12-cluster case is consistently
above that of the single-classifier and touches that of the match-
condition at several points. Similar trend is observed for the other
domains presented in Table 2.

5. DISCUSSION AND FUTURE WORK

In summary, we show that the performance of the task of ASR-
confidence based automatic acceptance/rejection of the ASR hy-
pothesis on unknown domains can be improved by forming across-
domain clusters of the training data and training a separate classifier
for each cluster. The decision on the test utterance is formed by
using the classifier corresponding to the closest cluster. The per-
formance of such a technique is shown to approach that of the
matched-condition case for several domains. Our on-going efforts in
exploring Mixture Regression techniques and the Transfer Learning
framework are presented in a companion paper [10].
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