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ABSTRACT

This paper addresses error type classification in continuous speech
recognition (CSR). In CSR, errors are classified into three types,
namely, the substitution, insertion and deletion errors, by making
an alignment between a recognized word sequence and its reference
transcription with a dynamic programming (DP) procedure. We pro-
pose a method for deriving such alignment features from a word
confusion network (WCN) without using the reference transcription.
We show experimentally that the WCN-based alignment features
steadily improve the performance of error type classification. They
also improve the performance of out-of-vocabulary (OOV) word de-
tection, since OOV word utterances are highly correlated with a par-
ticular alignment pattern. In addition, we show that the word accu-
racy can be estimated from the WCN-based alignment features and
more accurately from the error type classification result without us-
ing the reference transcription.

Index Terms— Speech recognition, error type classification,
word accuracy estimation, alignment features, word confusion net-
work

1. INTRODUCTION

Errors are essentially unavoidable, and therefore, based on this ba-
sic premise, we have to tackle the problems in speech recognition.
Namely, auxiliary processing which takes into account the existence
of errors in a recognition result plays a critical role in a practical use
of speech recognition. For example, confidence estimation, which
scores the reliability of a recognition result, is one of such auxiliary
processing. And OOV word detection is another example, since it
means the detection of parts in a recognition result which could never
be correctly recognized. Many approaches have been proposed for
achieving accurate confidence estimation and OOV word detection,
e.g. [1, 2, 3, 4, 5].

Confidence estimation and OOV word detection are useful for
the detection of unreliable parts in a recognition result. As an exten-
sion of the auxiliary processing that deal with recognition errors, this
paper addresses the classification of error types in continuous speech
recognition (CSR), namely, the substitution, insertion and deletion.
These three types of errors are counted based on an alignment be-
tween a recognized word sequence and its reference transcription
with a dynamic programming (DP) procedure. If the types of errors
are automatically detected and classified without using the reference
transcriptions, it can help the development of practical speech appli-
cation systems. For example, in spoken document retrieval systems,
many insertion errors in spoken document transcriptions degrade the
precision of the search performance [6]. If we are to improve the
precision in this situation, we can put the documents that have less
frequently insertion errors at higher ranks in the retrieved document
list. As another example, we can estimate the word accuracy from
the classification result of the three types of errors without using the
reference transcriptions. This is not made possible only with the er-

roneous part detection. It should be noted that the error type classifi-
cation includes confidence estimation, since it also detects correctly
recognized words along with the three types of errors. To the best of
our knowledge, little effort has been made as regards the error type
classification compared with confidence estimation and OOV word
detection.

We treat the error type classification as the problem of discrimi-
native classification using many kinds of features, as with the recent
trends in confidence estimation and OOV word detection. In partic-
ular, we employ the features that are designed to directly improve
the performance of error type classification. They are alignment fea-
tures derived from a word confusion network (WCN) , by summing
the posterior probabilities attached to the words, for every type of
error (Section 2). Namely, they are the substitution, insertion and
deletion error probabilities and are used in a discriminative clas-
sifier (Section 3.1). We show experimentally that the WCN-based
alignment features steadily improves the performance of error type
classification (Section 4.1). They also improve the performance of
OOV word detection, since OOV words are highly correlated with a
particular alignment pattern (Section 3.2). In addition, we show that
the word accuracy can be estimated from the WCN-based alignment
features and more accurately from the error type classification result
without using the reference transcription (Section 4.2).

2. ALIGNMENT FEATURES
FROM WORD CONFUSION NETWORK

A word confusion network (WCN) is a compact representation of
multiple recognition results (recognized word sequences). It can be
efficiently obtained by converting a recognition lattice with consen-
sus decoding [7]. An example of a WCN is shown at the top of Fig.
1. A recognized word (or a null word) is represented as an arc, and
all competing recognized words in a segment are represented as arcs
that share the same start and end nodes (e.g. the words wc

i , w
d
i , we

i

and null word εi are competing in the segment i). Each compet-
ing word in a segment has a posterior probability (p(wc

i ), p(w
d
i ),

p(we
i ) and p(εi)) and these posterior probabilities are summed to

one (
∑

v p(w
v
i ) + p(εi) = 1). The word that has the highest pos-

terior probability in a segment (the best word wc
i ) is selected as a

word in the 1-best recognition result. And this posterior probability
(p(wc

i )) can be used as a confidence measure [4, 6] that scores the re-
liability of the best word, i.e. the Correct probability of the segment
(pi(C) = p(wc

i )).
In addition to the confidence score (correct probability), we pro-

pose a method for deriving the substitution, insertion and deletion
error probabilities from a WCN. The Substitution error probability
of a segment is obtained by summing the posterior probabilities in
the segment excluding the highest posterior probability (confidence
score, i.e. correct probability, of the best word) and the posterior
probability of the null word (pi(S) = p(wd

i )+p(we
i )). If this substi-

tution error probability is high, the WCN estimates that the best word
in the segment (wc

i ) is incorrect and a substitution error (S) occurs.
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Fig. 1. Derivation of an alignment network and 1-best alignment
result from a word confusion network. Best paths are drawn with
bold curve lines.

When the posterior probability of a null word is not the highest in a
segment (e.g. segment i), it is equal to the Insertion error probabil-
ity of the segment (pi(I) = p(εi)). If this insertion error probability
is high, the WCN estimates that the best word in the segment (wc

i )
may be incorrect and an insertion error (I) occurs. If the posterior
probability of a null word is the highest in a segment (e.g. segment
i+1), no recognized word is selected from this segment as a word in
the 1-best recognition result, that is, the null word is selected. And
the Deletion error probability of this segment is obtained by sum-
ming the posterior probabilities of all competing words against the
null word in the segment (pi+1(D) = p(wf

i+1) + p(wg
i+1)). If this

deletion error probability is high, the WCN estimates that a deletion
error occurs in the segment.

As a result of the above procedure, we can obtain an alignment
network with the correct, substitution error, insertion error and dele-
tion error probabilities as shown at the middle of Fig. 1. Further-
more, by selecting the best path in the alignment network, we can
obtain the 1-best alignment result as shown at the bottom of Fig. 1.
This 1-best alignment result is equivalent to that usually obtained
with a DP procedure between a recognized word sequence and its
reference transcription (correct word sequence) when we calculate
the word accuracy of a recognition result [8]. We can expect the
alignment features obtained from a WCN (the probabilities in an
alignment network and the 1-best alignment result) can improve the
performance of the error type classification. In addition, in a pre-
liminary experiment, we found that the OOV word utterances are
highly correlated with a particular alignment pattern obtained with
DP (Section 3.2), and thus, we can also expect the WCN-based align-
ment features to improve the performance of OOV word detection.
Moreover, we expect to be able to estimate the word accuracy of a
recognition result directly from the WCN-based alignment features
without using the reference transcription.

3. ERROR TYPE CLASSIFICATION METHOD

As with [5], we used conditional random fields (CRF) [9] as the dis-
criminative classifiers for the estimation of error types, confidence
and OOV words. In the following, we describe the features and la-
bels used in the CRFs.

Table 1. Features of a recognized word. WCN-based alignment
features are written with bold characters.

ID Feature
1 Recognized word itself
2 Part-of-speech (POS)
3 Language model back-off behavior
4 Number of frames
5 Number of phonemes
6 Average number of frames per phoneme
7 Confidence score (correct probability)
8 Substitution error probability
9 Insertion error probability

3.1. Features

A feature vector of a recognized word is obtained by a main speech
recognition process and certain additional processes, e.g. the con-
version of a recognition lattice to a WCN. The features used in the
experiments are listed in Table 1. The first seven features are basic
ones [5]. The confidence score (correct probability), a WCN-based
feature, is included in the basic features (7th).

In addition to the above seven basic features, we added the sub-
stitution and insertion error probabilities obtained from an alignment
network shown at the middle of Fig. 1 as the WCN-based features
(8th and 9th). We do not (cannot) use the deletion error probability,
since we estimate the label of the actual recognized word in a recog-
nition result not the null word. We do not use the 1-best alignment
result shown at the bottom of Fig. 1, since such a hard decision result
will often be harmful to the estimation. Moreover, we do not use the
other WCN-based features, e.g. those proposed in [4], since we want
to clarify the pure effectiveness of the substitution and insertion error
probabilities. With reference to [1, 5], all features excluding the 1st–
3rd features are quantized into seven bins with a uniform-occupancy
binning function.

It has been reported that the contextual information of the fea-
tures improves the performance of confidence estimation [5] and
OOV word detection [4]. We also employ the contextual features
in our experiments. With the pattern “pxsxny”, we represent the
preceding and succeeding x feature contexts in addition to the cur-
rent feature with maximum y feature n-grams at each feature dimen-
sion. On the basis of a preliminary experiment, we changed x from
0 (i.e. only current feature) to 2 and changed y from 1 to 3. As a
result, there are seven feature patterns as follows: p0s0n1, p1s1n1,
p1s1n2, p1s1n3, p2s2n1, p2s2n2 and p2s2n3.

3.2. Labels

In error type classification, the label for a recognized word takes
three values, i.e. the recognized word is Correct (C), a Substitution
error (S) or an Insertion error (I). It does not take the value D, i.e.
a Deletion error, since we estimate the label of the actual recog-
nized word in a recognition result not the null word. In confidence
estimation, a label takes binary value that indicates the recognized
word is correct (0) or incorrect (1). We make these C/S/I and cor-
rect/incorrect labels by making an alignment between the 1-best
recognition result and its reference transcription by using the NIST
SCLITE scoring package [8].

In OOV word detection, we have to define the segment that
is influenced by an OOV word utterance. We define this segment
based on an alignment result obtained with SCLITE as shown in Fig.
2. In this example, we consider that an OOV word utterance “dis-
similar” can influence not only a directly corresponding recognized
word “similar” but also one preceding and one succeeding recog-
nized word “this” and “about”. “similar” and “this” are in the in-
fluenced segment and misrecognized. Thus, we give them a label
that indicates “the uttered word that corresponds to the segment of
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Fig. 2. Labeling in an OOV word utterance segment. The alignment
pattern “I+S+C” is frequently observed in OOV word utterance seg-
ments.

the recognized word is an OOV word.” “about” is also in the influ-
enced segment, however, it is correctly recognized. Thus, we give it
a label that indicates “the recognized word is an in-vocabulary (IV)
word.” This example well explains the correlation between the OOV
word utterances and the alignment patterns. An OOV word utterance
tends to be misrecognized as a sequence of short words, and thus, as
shown in this example, a particular alignment pattern “I+S+C” is
very frequently observed in the OOV word utterance segments. In
a preliminary experiment, we confirmed that this alignment pattern
occurs in more than 25% of the OOV word utterance segments.

4. EXPERIMENTS

We conducted initial experiments to assess the effectiveness of the
WCN-based alignment features (the substitution and insertion er-
ror probabilities) in the estimation of error types (CSI), confidence,
OOV words and word accuracy. All the experiments were performed
with our speech recognition platform SOLON [10] using the MIT
lecture speech corpus [11].

4.1. Error Type Classification Results

An HMM-based acoustic model was discriminatively trained by us-
ing 110 hours (104 lectures) of speech data with a differenced max-
imum mutual information (dMMI) criterion [12]. It had 2565 states
and each state had 32-mixture Gaussian pdfs. A word trigram lan-
guage model was trained by using 6.2M words of manually tran-
scribed lecture speech. The vocabulary size of the lexicon was 16.5k
and there were 48 POS classes.

The CRF training data consisted of 207 hours (228 lectures) of
speech data (1.92M words, some lectures are also included in the
acoustic model training data). We ran speech recognition against this
CRF training data, generated the confusion networks, extracted the

features described in Section 3.1 and provided labels using the proce-
dure described in Section 3.2. Then, we trained individual CRFs for
the error type (CSI) classification, confidence estimation and OOV
word detection with the seven feature context patterns described in
Section 3.1. In total, we obtained 21 CRFs.

The evaluation data consisted of 7 hours (8 lectures) of speech
data (6.2k utterances, 72k words). We conducted feature extraction
against this evaluation data using the procedure that we employed
for the CRF training data. The OOV rate was 3.07%. The 1-best
recognition results were obtained from WCNs and the word accuracy
was 72.16%. Then, by using each of 21 CRFs, we conducted the
error type (CSI) classification, confidence estimation and OOV word
detection.

Table 2 shows the accuracies of the error type (CSI) classifi-
cation, confidence estimation and OOV word detection without and
with the WCN-based alignment features (the substitution and inser-
tion error probabilities). It can be seen that the less frequently occur-
ring labels are more difficult to detect. However, we can confirm that
the WCN-based alignment features steadily improve the estimation
accuracies of all labels, especially those of the less frequently occur-
ring labels. The selected feature patterns indicate the importance of
considering the feature contexts and n-grams as reported in [4, 5].
In particular, the error type (CSI) classification needs larger n-grams
(3-grams). The CRF for the error type (CSI) classification solves
the three-class classification problem. However its detection perfor-
mance with respect to the correct word (C) is the same as that of the
confidence estimation, i.e. correct/incorrect two-class classification.

Table 3 shows weight rankings for the WCN-based alignment
features (including the confidence score (correct probability)) in
each CRF. We can confirm that reasonable weights are given to the
features in each CRF. This is especially obvious in the CRF for the
error type (CSI) classification, i.e. each of the correct / substitution
error / insertion error probabilities is given a large weight in each
of the C/S/I detections. In the CRF for the OOV word detection,
larger weights are given to all three features. This indicates that the
WCN-based alignment features contribute to the detection of the
particular alignment pattern “I+S+C” in the segments of the OOV
word utterances as shown in Fig. 2.

4.2. Word Accuracy Estimation Results

There are two methods for estimating the word accuracy directly
from the WCN-based alignment features without using the refer-
ence transcriptions. The first method uses the 1-best alignment result
shown at the bottom of Fig. 1. The second method uses the proba-
bilities associated with the alignment network shown in the middle
of Fig. 1. In the second method, to calculate the word accuracy,
i.e. count up the number of CSIDs, of a recognition result, we sum
up the correct, substitution error, insertion error and deletion error
probabilities for all the segments in a WCN. However, since only

Table 2. Accuracies of the error type (CSI) classification, confidence estimation (correct/incorrect classification) and OOV word detection
(IV/OOV classification) without and with the WCN-based alignment features (the substitution and insertion error probabilities). #T: number
of true labels, #R: number of retrieved labels, #C: number of correct labels in the retrived labels, Recall=#C/#T, Precision=#C/#R, F-
measure=2·Recall·Precision/(Recall+Precision), Feature pattern: one that gives highest estimation accuracy.

Label #T #R #C Recall Precision F-measure Feature pattern
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

C 55613 58313 58031 51080 51048 0.919 0.918 0.876 0.880 0.897 0.898 p2s2n3
S 31231 12295 12421 6957 7072 0.526 0.535 0.566 0.569 0.545 0.551
I 3450 1686 1842 686 771 0.199 0.224 0.407 0.419 0.267 0.291
Correct 55613 57119 57212 50559 50703 0.909 0.912 0.885 0.886 0.897 0.899 p2s2n2
Incorrect 16681 15715 15082 10121 10172 0.607 0.610 0.667 0.674 0.635 0.641
IV 68009 66074 66347 63984 64307 0.940 0.946 0.968 0.969 0.954 0.957 p2s2n2
OOV 4285 6220 5947 2195 2245 0.512 0.524 0.353 0.378 0.418 0.439

4927



Table 3. Weight rankings for the WCN-based alignment features
(the correct probability (confidence score), substitution error proba-
bility and insertion error probability) in each CRF. In all CRFs, the
largest weight is given to the recognized word and the second largest
weight is given to the POS of the recognized word, since they are
not quantized and have more classes than the other features.

Label Cor. prob. Sub. err. prob. Ins. err. prob.
C 3 7 5
S 4 3 5
I 4 7 3
Correct 3 5 6
Incorrect 3 5 6
IV 3 5 4
OOV 3 5 4

the actual words in a recognition result are considered and the null
words (e.g. segment i+ 1 in a WCN of Fig. 1) are ignored, we can-
not count the number of insertion and deletion errors with the first
1-best estimation method and we cannot sum up the deletion error
probabilities with the second probabilistic estimation method.

As with the above WCN-based method, we can estimate the
word accuracy from the error type (CSI) classification result (with
the WCN-based alignment features) shown in Table 2. As a result of
the CSI classification, a recognized word is given the correct, substi-
tution error and insertion error probabilities that are summed to one.
And by using these probabilities, we can estimate the word accuracy
with the 1-best (i.e. select the highest probability at each recog-
nized word in a recognition result) and probabilistic methods. These
“CSI-based” methods take the substitution and insertion errors into
consideration, but, they neglect the deletion errors.

Table 4 shows the word accuracies calculated by SCLITE with
the reference transcriptions and estimated by the WCN- and CSI-
based 1-best and probabilistic estimation methods without the refer-
ence transcriptions. With these four estimation methods, the refer-
ence transcriptions are not used, and thus, the number of words is
estimated as #N = #C + #S. The word accuracies of the CSI-based
methods, especially the CSI-based probabilistic method, is closer to
that of SCLITE than the WCD-based methods. However, as shown
in Fig. 3, the correlation of the utterance-level word accuracies ob-
tained with SCLITE and the CSI-based probabilistic method is not
very high. The correlation coefficient is 0.71. And from this figure,
it can be seen that the lower word accuracies are more difficult to
estimate.

5. CONCLUSION AND FUTURE WORK

We have proposed a method for deriving alignment features from a
word confusion network (WCN) and used it in error type classifi-
cation and word accuracy estimation. In the initial experiments, we
confirmed that the WCN-based alignment features steadily improves
the performance of error type classification, especially that of the
insertion error, the less frequent events. And the word accuracy es-
timated from the error type classification results without using the
reference transcriptions was close to that calculated by the SCLITE
scoring tool [8] using the reference transcriptions.

However, the total performance of error type classification and
the estimation performance of lower word accuracy still remain at
unsatisfactory level. To improve the total performance of error type
classification, we are planning to add effective features, e.g. those
proposed in [2, 3, 4], and investigate the joint estimation of the error
types, confidence and OOV words [13]. We expect that by consid-
ering the other WCN-based features, e.g. those proposed in [4], we
will be able to improve the estimation performance of the lower word
accuracy. We are also planning to consider the deletion errors in the
error type classification and word accuracy estimation.

Table 4. Word accuracy calculated by SCLITE with the reference
transcriptions and those estimated by the WCN- and CSI-based 1-
best and probabilistic estimation methods without using the refer-
ence transcriptions. #N: number of words, #C: number of cor-
rectly recognized words, #S: number of substitution error words,
#I: number of insertion error words, #D: number of deletion words,
%Correct=100·#C/#N, Word Accuracy=100·(#C−#I)/#N.

Method #N #C #S #I #D %Cor. WACC
SCLITE 72283 55613 13231 3450 3439 76.94 72.16
WCN 1-best 72294 68183 4111 0 0 94.31 94.31
WCN prob. 69836 61876 7960 2458 0 88.60 85.08
CSI 1-best 70452 58031 12421 1842 0 82.37 79.76
CSI prob. 68662 54838 13824 3632 0 79.87 74.58
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Fig. 3. Correlation of utterance-level word accuracies obtained with
SCLITE and CSI-based probabilistic method.
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