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ABSTRACT

 
Model-based approaches for noise reduction effectively improve 
the performance of automatic speech recognition in noisy 
environments. Most of them use the Minimum Mean Square 
Estimate (MMSE) criterion for de-noised speech estimates. In 
general, an observation has speech-dominant bands and noise-
dominant bands in the Mel spectral domain. This paper 
introduces a method to add weight to speech-dominated bands 
when evaluating the posterior probability of each speech state, as 
these bands are generally more reliable. To leverage high-
resolution information in the Mel domain, we use Local Peak 
Weight (LPW) as the confidence metric for the degree of speech 
dominance. This information is also used to regulate the amount 
of compensation that is applied to each frequency band during 
feature reconstruction under an integrated probabilistic model. 
The method produced relative word error rate improvements of 
up to 33.8% over the baseline MMSE method on an isolated word 
task with car noise. 
 
Index Terms—Harmonic analysis, speech enhancement, robust 
speech recognition, model-based noise reduction, missing feature.
 

1. INTRODUCTION 
 
Various techniques have been studied to improve the performance 
of automatic speech recognition (ASR) in noisy situations, such 
as in automobiles. In noise reduction techniques, simple 
approaches to reducing noise such as spectral subtraction (SS) 
have had limited success. Their signal recovery is inadequate in 
very low Signal to Noise Ratio (SNR) situations with ambient 
noise, such as “Fan high” or “Window open” during high speed 
driving. For such situations, model-based approaches such as 
VTS [1], SPLICE [2], and DNA [3] are known to work more 
effectively. They most often use Minimum Mean Square Estimate 
(MMSE) criteria for the de-noised speech estimates. These 
estimates are obtained as weighted sums of the posterior means, 
where the weights are the posterior probabilities, so the quality of 
the posterior probability estimation is critically important. If the 
model is designed in the Mel-log-spectrum domain, we can 
improve the posterior probability by weighting the bands using 
frequency-wise confidence metrics, since the use of reliable 
bands has been widely exploited in previous studies on missing 
features [4]. This is one of the themes of the work reported here. 

The estimates produced by the model-based noise reduction 
are good approximations in most of the degraded speech cases. 

However, when the model is mismatched with the current noise 
condition, distortions derived from the compensation can reduce 
the accuracy of the ASR. DNA uses Condition Detection [5], 
which interpolates the observations and the raw estimates to 
output more observations in mismatched cases. This motivated us 
to interpolate for each band by using our frequency-wise 
confidence metrics. If a band is sufficiently clean, then we can 
use more of those observations. When a band is degraded, we can 
use more of the compensated values. This is another theme of our 
work. This paper also shows the two themes can be pursued in 
one probabilistic model. 

The frequency-wise confidence metric can be based upon any 
indicator of the reliability of the speech band. Many researches 
on missing feature used local SNR information to identify 
degraded bands. In this paper, we are interested in using the 
confidence metric generated from the Local Peak Weight (LPW) 
[6] to integrate high-resolution information in the Mel band. LPW 
is a representation of the harmonic structure that is observed in 
the local peaks at regular intervals in the spectrum domain. In 
very noisy situations, harmonic structures are often retained only 
around formant frequencies in vowels. These bands should have 
more speech power and be more reliable than others. When LPW 
was originally introduced for speech enhancement, it was called 
Local Peak Enhancement (LPE) [7]. It relies upon the assumption 
that the ambient noise does not include harmonic components and 
can be calculated directly from the observed spectrum on a per-
frame basis. Unlike comb filtering, LPE does not require F0 
estimation or voiced/unvoiced detection. 

Our proposed frequency-wise confidence metric can be 
applied for any model-based approach as long as it can be 
modeled in the Mel-log-spectrum domain. For simplicity, this 
paper uses Segura’s MMSE approach [8]. It estimates the MMSE 
mismatch function using a clean speech GMM and a noise 
Gaussian, and it subtracts the estimate from the observation in the 
logarithmic domain. The noise mean and variance should be 
explicitly given, such as the top 10 frames of each utterance (as 
used in our experiment in this paper).  

 
2. BASELINE MMSE 

 
We briefly review Segura’s MMSE approach, our baseline 
MMSE system. The output log-power of the band d in the Mel-
filter bank at frame t, corresponding to the noisy speech yd(t) can 
be written as a function of the energy of the clean speech xd(t) 
and the noise nd(t). 

txtntxty dddd exp1log  (1) 
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In vector notation without t, 
gxy , (2) 

where g  is given by the mismatch function G  for each band as 

dddd xng exp1log,G nx . (3) 
The clean speech is modeled as a K-Gaussians mixture  

K

k
kxkxkp ,, ,;xx , (4) 

where k is the k-th Gaussian prior probability, with mean x,k_x;k and 
covariance matrix x,k (assumed to be diagonal).  
In our interpretation, we can model g  as a Gaussian mixture with 
a 1st order Taylor series, 

K

k
kgkgkp ,, ,;gg , (5) 

where 
nkxkxnkg ,exp1log ,,, G , and (6) 

nkxnkxkg ,
2

,, ,F . (7) 

F  is an auxiliary function defined for each band as 
1exp1, ddd nxF nx . (8) 

Then the compensated speech x is given with MMSE as  ˆ

kg

K

k
kdp ,ˆ yygyggyx . (9) 

The data of x  is passed to the backend for recognition. ˆ
The posterior probability

k
given by y is 

k
kykykkykykk ,,,, ,;,; yyy , (10) 

where 
nkxkxky ,,,, G , and (11) 

nnkxkxnkxky
2

,,
2

,, ,,1 FF . (12) 

 
2.1 Gain Adaptation 
 
For the baseline MMSE system, we also used a gain adaptation, 
because the Gaussian modeling in the Mel-log-spectrum domain 
is dependent on the recording gain. We can regard the 
observation y  in Section 2 as already pre-processed with the gain 
adaptation to maximize the total likelihood of the utterance as 

Iyy qin
, (13) 

where 
in

 are the raw observations and q is the scalar bias to 
adapt the recording gain in the Mel-log-spectrum domain. 

y

 
3. CONFIDENCE-WEIGHTED MMSE 

 
Assume we have a confidence metric 

d
 for the d-th band. If 

d
 

has a larger value, then the band is probably more reliable as a 
clue to find the best matching Gaussian. Therefore, we can 
increase the weight on that band when evaluating the posterior 
probability using a modified Gaussian with diagonal covariance 
as 

kykyy ,, ,;  

D

d dkydkyddky

d

y
1 ,,

2
,,

2
1

,,2
1

2exp2  (14) 

and 
k

kykykkykykk ,,,, ,;,; yyy ,  (15) 

where D is the dimension of the Gaussian. It should be noted 
band d is exponentially weighted by 

d
 in (14). We use (15) 

instead of (10) as our Confidence Weighted MMSE (CW-MMSE). 
This paper uses a confidence metric derived from LPW. It is 

extracted from an observed signal on a frame-by-frame basis 
using cut-off DCT operations [6][7]. We obtain Mel-LPW as  
by processing with the Mel-band-pass filter as 

dw

i
id

i
idid BBvw ,,

, (16) 

where  is the d-th triangle filter for the i-th bin and  is the 

LPW for the i-th bin. 
idB , iv

As shown in Fig. 1, it is then processed with a sigmoid 
function and normalized as the confidence metric 

d
, where 

0.1exp0.10.1 dd wa  and (17) 

d
ddd D

1 . (18) 

The sigmoid function uses the constant a . We used 5a  in our 
experiments. 

As (18) indicates, the average of  is 1. If is flat and 
uniformly 1, there is no weighting and  becomes a standard 
Gaussian. We expect  to be close to 1 for unvoiced segments 
and non-speech segments. 
 

4. CONFIDENCE-WEIGHTED INTERPOLATION 
 
There is a practical choice for the interpolated output between the 
observation and the compensation, so that we can adjust the 
weight for each band depending on the confidence metric of that 
band. The interpolated output x~  is passed to the backend as 

ddddd yxx ˆ0.1~ . (19) 
We used another confidence metric  varying from 0 to 1 that is 
also derived from the LPW processed with a sigmoid function, 

bwa dd 0.1exp0.10.1 , (20) 
where b  is a constant value. We set it to 0.3 in our experiments.  
If 

d
 is close to 1, then that band is probably sufficiently clean 

and needs less compensation. If 
d

 is close to 0, then the band 
must have less speech power and be more susceptible to noise 
and probably requires more compensation. 

We call this approach Confidence Weighted Interpolation 
(CW-INT). This can be combined with CW-MMSE from Section 
3 for further improvement. 
 

5. PROBABILISTIC CONFIDENCE-WEIGHTED 
MMSE 

 
CW-MMSE and CW-INT can be combined in a single 
probabilistic framework. We suppose the probability of the 
mismatch vector g  is given by the observation y  and the 
confidence metric . They are modeled as 

gygyg ppp , , (21) 

where gp  is a model with a higher probability at =0, as 

when 
dg

d
 has a higher value.  
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Then the distribution of the product probability ,ygp  is 

to be shifted toward
dg =0. If MMSE estimates 

dg  as being 
close to zero, then the output becomes close to the observed value, 
as (9) suggested. This is similar to the behavior of CW-INT

 

. 
Our approach models  as a Gaussian, gp

,0;ggp . (22) 

The variance  should have a small value when  is large. 
There may be various choices for this mapping. We calculated the 
variance  by scaling the variance of the k-th Gaussian at the d-
th band in the speech model as  

cddkxdk
1

,,,
, (23) 

where the constant c is adjusted between 0 and 1. We set it to 0.5 
in our experiments. Then ,ygp  can be written as a Gaussian 

mixture model, 

k

K

k
kgkgkp ,0;,;, ,, ggyyg  

K

k
kgkgk ,,;gy . (24) 

The variances and the means are given by 
111

,, kkgkg
 and (25) 

kgkkgkgkg ,
1

,
1

,, 0 . (26) 

Confidence metric
 for CW-INT

Observed 
spectrum

Local Peak Weight 
(LPW)

Mel-LPW

Confidence metric
 for CW-MMSE

Fig. 1. Process of generating confidence metrics based on 
LPW information.The posterior probabilities are given by 

k
kykykkykykk ,,,, ;; yyy , (27) 

where 
111

,, kkyky
 and (28) 

kykxkkykyky ,,
1

,
1

,,
. (29) 

Finally, the estimate using MMSE is obtained as 

kg

K

k

According to (28), the variance used for the posterior probability 
 becomes smaller than the original variance  for the 

d-th band when the confidence metric 
d

kdp ,,ˆ yygyggyx . (30) 

dky ,, dky ,,

 is large. This makes 
the d-th band Gaussian more sensitive. This is similar to the 
behavior of CW-MMSE. 

 
6. EXPERIMENTS 

6.1. Experimental setup 

CENSREC-3, a widely used evaluation framework for isolated 
Japanese word recognition in actual automobile environments, 
was used in these experiments. This data was collected by the 
Information Processing Society of Japan (IPSJ), and is often used 
to evaluate noise reduction algorithms [9]. It has speech data both 
for training and testing for automatic speech recognition using 
various kinds of trained acoustic models. 

The test data in the database was recorded under 16 
environmental conditions using combinations of three vehicle 
speeds and six kinds of in-car environments. A total of 14,216 
utterances spoken by 18 speakers (8 males and 10 females) were 

recorded at a 16-kHz sampling frequency. The recognition 
grammar is a list of 50 words. 

For the training data, each driver’s voice saying phonetically 
balanced sentences was recorded under two conditions: while 
idling and while driving on a city street in a normal in-car 
environment. A total of 14,050 utterances spoken by 293 drivers 
(202 males and 91 females) were recorded with a close-talking 
microphone and a hands-free microphone. 

In this experiment, we used only hands-free microphone data 
for both training and testing. The acoustic models were trained 
with both idling data and driving data for the front-end processing 
being tested. This corresponds to Condition 3 as defined in 
CENSREC-3. For the clean speech GMM, we used idling data 
recorded with a close-talking microphone. The GMM has 256 
Gaussians and it was modeled in a 24-dimensional Mel-log-
spectrum domain. 

For our evaluation, front-end programs to output various 
types of features were prepared for the training and the testing, 
but the backend process to train the acoustic models was 
unchanged. We used feature vectors with 39 dimensions (12 Mel-
cepstrum + C0, with their  and ) with cepstrum mean 
normalization (CMN). They were computed from 20-ms frames 
with a 10-ms shift, using 512 points for the DFT. 
 
6.2. Experimental results 
 
Table 1 shows the resulting word accuracies for various 
environmental conditions. Since we know the LPW techniques 
are based on the assumption that the ambient noise does not 
contain any harmonic component, the audio-on (CD player) cases 
were excluded from this table. We will discuss the limitations for 
those cases while explaining Table 2. 
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The baseline is the evaluation without using any speech 
enhancement or noise reduction algorithm. The baseline MMSE 
is Segura’s MMSE from Section 2. It has significant gain over the 
baseline in the “Fan high” and “Window open” cases. The CW-
MMSE proposed in Section 3 further reduced the error by 14.4% 
below the baseline MMSE. The CW-INT proposed in Section 4 
reduced the error by 24.4% from the baseline MMSE. It is 
significant that the band-level interpolation worked very well to 
improve the performance of the model-based noise reduction 
approach. The combination of CW-MMSE and CW-INT reduced 
the error by 26.2% from the baseline MMSE. 

PCW-MMSE is the probabilistic confidence-weighting 
approach proposed in Section 5. It reduced the error by 33.8% 
from the baseline MMSE. It also outperformed the combination 
of CW-MMSE and CW-INT. This is an especially promising 
result, because there is room for improvement in the design of the 
variance in Equation (23). 

Table 2 shows the resulting word accuracies in audio-on cases 
to evaluate the drawbacks when the noise includes harmonic 
structures. The baseline MMSE showed a small degradation from 
the original baseline. Probably, this is caused by the non-
stationary nature of the audio noise, because we measured the 

statistics of the noise only with the top 10 frames of each 
utterance. All of the proposed methods showed further 
degradation from the baseline MMSE. This is because LPW has 
higher values in audio noise. We see driving noise in the high 
speed case masked the harmonic structure in the audio noise to 
mitigate the drawbacks. 

Table 1. Results of CENSREC-3 in Condition 3, using 39-
dimension feature vectors (12 Mel-cepstrum + C0, with their 

 and ) with CMN, in audio-off cases only 
CENSREC-3
(Condition 3)

Baseline
Baseline
MMSE

CW-
MMSE

CW-INT

CW-
MMSE

and
CW-INT

PCW-
MMSE

Normal 100.0 100.0 99.9 99.8 99.8 100.0
Hazard on 99.4 97.9 98.0 98.2 98.3 98.2
Fan low 98.0 98.8 98.8 99.2 99.4 99.1
Fan high 63.1 81.2 85.2 86.7 88.1 90.2
Window open 93.1 96.6 96.9 97.6 97.3 97.3
Average 90.7 94.9 95.8 96.3 96.6 97.0
Normal 99.8 98.7 98.9 98.8 99.1 99.2
Fan low 96.8 97.8 98.0 98.5 97.8 97.9
Fan high 69.3 84.5 87.4 89.8 89.7 90.8
Window open 80.8 82.5 85.1 86.7 86.7 88.4
Average 87.5 91.7 93.0 94.0 94.0 94.7
Normal 98.1 97.3 97.8 98.3 98.7 98.9
Fan low 94.8 96.2 96.9 97.2 97.8 98.1
Fan high 64.8 83.8 85.4 88.7 87.4 89.8
Window open 49.0 61.5 66.2 67.3 68.8 70.4
Average 78.8 86.1 87.9 89.1 89.3 90.4

85.2 90.5 91.9 92.8 93.0 93.7

High
speed

Average

Word Accuracy (%)

Idling

Low
speed

 

 
7. CONCLUSION 

 
In order to improve the performance of model-based noise 
reduction, we have devised an approach to add weight to the 
speech-dominant bands by evaluating the posterior probability for 
the MMSE, favoring the more reliable bands. Another approach 
uses the interpolated output between the observations and the 
compensated values, so that we can output more observations 
instead of the estimated values for those bands, since they must 
be relatively closer to clean speech. We then combined these two 
approaches in one probabilistic framework. In order to leverage 
high-resolution information in the Mel domain, the confidence 
metric for each band was formulated with harmonic information 
known as LPW. Experiments showed the proposed approaches 
successfully outperformed the baseline MMSE. 
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Table 2. Results of CENSREC-3 in Condition 3, in audio-on 
cases only 

CENSREC-3
(Condition 3)

Baseline
Baseline
MMSE

CW-
MMSE

CW-INT

CW-
MMSE

and
CW-INT

PCW-
MMSE

Idling Audio on 90.7 88.7 88.1 63.0 73.0 79.5

Low
speed

Audio on 93.2 88.7 87.2 72.4 81.6 83.2

High
speed

Audio on 91.9 90.4 89.4 81.9 84.8 87.7

91.9 89.3 88.2 72.4 79.8 83.4

Word Accuracy (%)

Average
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