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ABSTRACT

We consider the task of speech recognition with loud music
background interference. We use model-based music-speech
separation and train GMM models for music on the audio
prior to speech. We show over 8% relative improvement in
WER at 10 dB SNR for a real world Voice Search ASR sys-
tem.

We investigate the relationship between ASR accuracy
and the amount of music background used as prologue and
the the size of music models.

Our study shows that performance peaks when using a
music prologue of around 6 seconds to train the music model.
We hypothesize that this is due to the dynamic nature of mu-
sic and the structure of popular music. Adding more history
beyond a certain point does not improve results. Additionally,
we show moderately sized 8-component music GMM models
suffice to model this amount of music prologue.

Index Terms— ASR, noise robustness, noise reduction,
non-stationary noise, music

1. INTRODUCTION

Thanks to the rapid adoption of mobile computing devices
such as smart phones and tablet computers, automatic speech
recognition (ASR) technology is used in an increasingly wide
range of environments with diverse background noise charac-
teristics. For example, Google’s Voice Search speech recog-
nition system is now used on many types of smart phones [1],
and has recently been extended to work inside the Chrome
web browser, which runs on desktops and tablet computers.

Voice Search works well on mobile devices when used
near-field, i.e. when the device is brought close to the user’s
mouth, which results in a high signal-to-noise ratio (SNR).
However, speech-enabled applications are being increasingly
used on tablets and desktops where the the distance from
the microphone to the user is greater and the speech-to-
interference ratio is worse by 10-20 dB.

Further, the type of noise interfering with the speech
signal in far-field scenarios is often non-stationary. Non-
stationary noise such as background speech, television, and
music is prevalent even in the query data received by Google
Voice Search on the mobile phone platform, and as far-
field applications of ASR technology grow, the problem will

worsen.
Non-stationary noise combined with a lower SNR can

cause problems for ASR systems, because the noise is not
well-represented by the acoustic model and cannot be easily
removed with simpler techniques such as spectral subtraction
[2] or Vector Taylor Series (VTS) [3].

In this paper, we describe experiments with using model-
based techniques such as Max and Algonquin to remove mu-
sical background noise from speech before it is processed by
an ASR system. Section 2 describes the algorithms we have
applied, section 3 describes the training and evaluation setup,
and section 4 describes the way in which parameters were
tested and presents the results. Finally, section 5 concludes
with a summary and discussion of future work.

2. MODEL-BASED MUSIC-SPEECH SEPARATION

A number of model-based noise suppression techniques have
been proposed in the literature including Parallel Model
Combination (PMC), Vector Taylor Series (VTS), MAX[4],
Algonquin[5] and recently Non-negative Matrix Factoriza-
tion (NMF). In this study we report results for Max and
Algonquin. We anticipate that the results will carry over to
other methods.

The components of these methods are the speech model
p(x), the noise model n(x), and the interaction model
p(y|x, n). The joint distribution is

p(y, x, n) = p(y|x, n)p(x)p(n). (1)

The interaction model describes the relationship between
the power spectra of the observation y, n and x. In the exact
from it is:

|Yt|
2 = |Xt|

2 + |Nt|
2 + 2

√
|Xt||Nt| cos θt (2)

Where Xt and Nt are complex Fourier coefficients and θ

is the phase angle between the speech an interference. The
phase is not known and can be modeled as a random variable.

In both Max and Algonquin, the speech and interference
signals are modeled with Gaussian mixtures.

p(x) =
∑

i

πiN(x;μi,Σi) (3)

where x is a frame of log-spectrum features, p(x) is the prob-
ability of the observation, πi is the mixture weight, μ is the
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Gaussian mean and Σ is the covariance matrix, which we as-
sume to be diagonal throughout this study.

It is possible to introduce strong temporal models [5] [6].
These models are especially useful when the interference sig-
nal is very similar to the target speech signal. In this study, we
do not use temporal constraints for the speech or interference
models.

2.1. Algonquin interaction model

The Algonquin method approximates Eqn. 2 as

|Yt|
2 = |Xt|

2 + |Nt|
2 + e (4)

where e is an error term. In the log domain, the error term
is assumed to be zero mean Gaussian with variance Ψ. The
interaction likelihood can therefore be written as:

p(y|x, n) = N(y; log(exp(x) + exp(n)),Ψ) (5)

The approximation is in the magnitude of the uncertainty due
to the unknown phase. Slightly better approximations are pos-
sible that take the relative size of this term into account [7].

2.2. Max interaction model

The Max method makes a more severe approximation to Eqn.
2. The observation is assumed to be equal to the maximum of
the speech or interference signals, i.e.

|Yt|
2 = max(|Xt|

2, |Nt|
2) (6)

The resulting likelihood can be expressed as:

p(y|x, n) = δ(y −max(x, n)) (7)

3. EXPERIMENTAL SETUP

The experimental setup is shown in Figure 1. We divide the
utterances for each speaker into training and testing sets, us-
ing the least-noisy 70% of the data (according to SNR as es-
timated by the percentile method) for training the speaker’s
speech GMM. This ensures that the speech GMM is com-
posed of relatively clean speech.

3.1. Training speech GMMs

To train the speech model for each speaker (pictured in the
left column of Figure 1), we first compute 256-dimensional
log-spectral feature vectors for each of the speaker’s train-
ing utterances, using 25ms frames spaced at 10ms intervals.
Next, we separate the speech frames from the non-speech
frames using a percentile-based VAD and use only the speech
frames to estimate a GMM averaging at least 20 frames per
component, with at most 200 components. We also use the
least-noisy of the non-speech frames to estimate a smaller 20-
component GMM, which we combine with the speech GMM
to form a speech and non-noise GMM.

Fig. 1: Experimental setup showing the training (left) and
testing (right) pipelines. Each speaker’s utterances were split
70%/30% into training and testing data. The training data was
used to build per-speaker speech models of the log-spectral
features, and the testing data was augmented with musical
noise, after which a noise model was computed from the mu-
sic prologue of each testing utterance, and together with the
speech model, used to remove the musical noise interfering
with the speech.

3.2. Training noise models

The remaining 30% of the data for each speaker is held out
as test data, as shown in the right column of Figure 1. For
each utterance in the test set, we select a random song from a
database of 500 popular songs, and mix it with the utterance
at the desired SNR. We include the desired amount of musi-
cal prologue before the onset of speech in the utterance. We
then compute the same 256-dimensional log-spectral feature
vectors used to create the speech model, and use the feature
frames from the prologue to construct noise GMMs of vary-
ing size.

3.3. Noise removal and evaluation

We then apply the Max and Algonquin noise reduction tech-
niques using the per-speaker speech model constructed from
the speaker’s training data, and the per-utterance noise model
constructed from each utterance’s prologue.

4918



The resulting feature frame sequence is then re-synthesized
as a waveform using the overlap-add method and sent to the
speech recognizer to test the de-noising quality. All speech
recognition was performed with a recent production version
of Google’s Voice Search speech recognizer. The gender
independent acoustic model uses standard 3-state context-
dependent (triphone) GMMs trained on a 39-dimensional
PLP cepstral coefficients, optimized for mid-field data, and is
trained with Linear Discriminant Analysis (LDA), semi-tied
covariance (STC) modeling [8], and boosted MMI [9]. The
Voice Search language model used for recognition contains
more than one million English words.

3.4. Dataset characteristics

The entire dataset consists of approximately 38,000 manually-
transcribed utterances containing 38 hours of anonymized
English-language spoken queries to Google Voice Search.
The utterances were spoken by 296 different speakers, and
range in length from 0.2 to 12.3 seconds, with a mean of 3.6
seconds. The utterances were recorded and stored in 16-bit,
16kHz uncompressed format.

The dataset contains a varying amount of speech for each
speaker. To account for the varying amount of training data
for each speaker, we group the speakers into three groups,
according to the number of frames used as training data for
that speaker. The groups are:

Group # training data frames # speakers

Small < 5, 000 62
Medium ≥ 5, 000 and < 10, 000 145
Large ≥ 10, 000 89

As described in section 3.2, the test set was selected
from this dataset by holding out the most noisy 30%, leaving
13,000 utterances in the test set.

4. RESULTS

In this section, we characterize the results according to several
parameters of the interfering noise and the algorithms, as well
as the amount of training data used to train the speaker model.

Figure 2 shows the relative reduction in word error rate at
different SNRs. Notice that the greatest reduction in WER
happens for the noisiest condition. This trend is expected
for two reasons. First, the recognizer’s acoustic models are
trained on mixed conditions and the benefit from noise clean-
ing are less substantial when the noise level is low and similar
to the conditions the recognizer was trained on.

Second, any noise enhancement methods with free param-
eters will introduce decision noise and artifacts. It is common
to retrain the system in a “multi-condition” style on the pro-
cessed audio to alleviate the issue of artifacts. Although re-
training should give overall better results, it should not affect
the trends seen here and hence we did not retrain the system
on processed speech.
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Fig. 2: Relative word error rate as a function of SNR.
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Fig. 3: Relative word error rate as a function of number of
mixtures in noise model.

Figure 3 shows the relative improvement in word error
rate for different noise model sizes for a music prologue of
length 8 seconds. This plot is characterized by a steep im-
provement until enough components are used. After this,
there is a plateau and only modest gains are achieved by dou-
bling and quadrupling the number of components.

Figure 4 shows the relative reduction in word error rate for
different amounts of music prologue used to train the noise
GMM, and for different noise GMM sizes. This plot shows
that using approximately 6 seconds of music prologue is op-
timum for removing subsequent musical interference later in
the signal. Using less prologue is insufficient to build an ad-
equate noise model, and more prologue is likely detrimental
because it includes music too dissimilar to the music inter-
fering with the subsequent speech. Also interesting is that
increasing the noise model size from 8 to 16 components de-
grades performance slightly, perhaps due to over-fitting.

The average reduction in WER over all SNRs for the Max
algorithm was 2.7% and for Algonquin algorithm it was 4.7%,
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Fig. 4: Relative word error rate as a function of the length of
the music prologue used to train the noise GMM, as well as
the size of the noise GMM, when using Algonquin at an SNR
of 16dB.

# training frames <5000 5000-10000 >10000

Rel. WER improvement -3.9% -1.4% 5.0%

Table 1: Average reduction in WER at 10dB for different
amounts of speaker training data.

The Algonquin algorithm outperforms the MAX algorithm
with almost double the reduction in WER. Additionally, the
Max algorithm was more sensitive to over-fitting, i.e. the per-
formance worsened as the noise model increased beyond the
optimum number of components.

The amount of training data available for training the
speaker models has a dramatic effect on performance. This is
shown in Table 1, and is shown in all the plots. With approxi-
mately 100 seconds or more training data good results can be
achieved. Interestingly, with less than 50 seconds of training
data, the speaker models are so poor that processing the audio
hurts recognition almost across the board.

5. DISCUSSION

In this paper we have shown that we can achieve substantial
reduction in WER for speech with music background noise,
even with modest music models trained on a small amount of
data prior to the speech. It is a common condition for Voice
Search and other applications to have access to the noise envi-
ronment prior to voice input, making this a realistic scenario.
We expect other non-speech background noise such as TV or
radio noise to have similar characteristics.

A very interesting result is that performance peaks for a
prologue of approximately 6 seconds. We hypothesize that
this is due to the dynamic nature of music and that the phras-
ing structure of popular music.

Future work will include exploring better ways to con-
struct speaker models with less training data, such as adapta-
tion of a global speaker model using a small amount of indi-
vidual speaker data.
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