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ABSTRACT

This paper proposes a method for compensating for the effect of
noise remaining in a signal generated by a multi-microphone signal
enhancer in the feature domain as a post-processing. The proposed
method assumes that the multi-microphone signal enhancer gener-
ates estimates of both the target and original environmental noise
signals. To obtain a time-varying residual noise feature model that
responds to noise changes quickly and is consistent with a clean fea-
ture model, the proposed method leverages both the multiple sig-
nal estimates provided by the signal enhancer and the clean feature
model. Specifically, the proposed method first roughly estimates
residual noise features on a frame-by-frame basis by comparing the
target and noise signal estimates. Then, these rough estimates are re-
fined by using the clean feature model to yield a time-varying resid-
ual noise feature model. Experimental results show the effectiveness
of the proposed method and its wide applicability.

Index Terms— Speech recognition, noise robustness, feature
enhancement, maximum likelihood, multiple microphones

1. INTRODUCTION

Robustness against acoustic environmental noise has been one of
the main topics in the automatic speech recognition (ASR) research.
The need for dependable noise robustness techniques seems to be
growing due to the rapid spread of speech recognition technology.

Signal enhancement and feature enhancement are popular ap-
proaches to noise robust ASR [1]. The signal enhancement approach
attempts to estimate a clean signal from its noisy version to improve
the signal-to-noise ratio. On the other hand, the feature enhancement
approach attempts to estimate clean features underlying observed
noisy features by exploiting a clean feature model. A Gaussian mix-
ture model (GMM) or a hidden Markov model (HMM) is often used
as the clean feature model. The use of a clean feature model allows
us to compensate effectively for the mismatch between the noisy fea-
tures and an acoustic model at a practical computational cost. The
clean feature model can also be used for noise feature estimation.

On the other hand, noise robust ASR systems may also be clas-
sified as either monaural or multi-microphone systems. For monau-
ral systems, many techniques tailored for noise robust ASR have
been developed including ones based on feature enhancement. These
techniques are very effective when the noise is stationary or changes
slowly [2]. However, when the noise is significantly non-stationary
(for example, when the noise consists of voices of interfering speak-
ers), they become ineffective due to the difficulty of noise feature
model estimation. In such severe environments, multi-microphone
systems are much more advantageous.

The problem common to all multi-microphone systems is resid-
ual noise. Most multi-microphone techniques are based on the signal
enhancement approach. Unfortunately, some of the noise inevitably

remains in the enhanced signals. This residual noise causes a mis-
match between the features obtained from the enhanced signals and
an acoustic model, which results in a degraded word accuracy. To
compensate for this mismatch, we consider using feature enhance-
ment techniques to eliminate the residual noise from the features ex-
tracted from the enhanced signals. However, when the residual noise
is significantly non-stationary (and this often occurs when the orig-
inal environmental noise is also extremely non-stationary), existing
feature enhancement methods cannot estimate an accurate residual
noise feature model.

The goal of this paper is to accurately estimate a time varying
model of residual noise features so that we can compensate for the
effect of significantly non-stationary residual noise in the feature do-
main as a post-processing step for multi-microphone signal enhance-
ment. We assume that a multi-microphone signal enhancer produces
at least two signals. One is an estimate of the target signal and the
other (or others) is an estimate of all or a part of the environmental
noise. We refer to the target estimate and the noise estimates as the
main signal and side signals, respectively.

To obtain a time-varying residual noise feature model that re-
sponds to noise changes quickly and at the same time is consistent
with a clean feature model used for feature enhancement, we pro-
pose a two-step approach. The first step roughly estimates the resid-
ual noise features on a frame-by-frame basis by comparing the main
and side signals. The temporal dynamics of these estimates is as-
sumed to be close to that of the true residual noise features. However,
there are inevitable errors between the true residual noise features
and their rough estimates. Thus, the second step makes up for these
errors by using the clean feature model and yields the time-varying
residual noise feature model. Specifically, in this step, we estimate
the static part of the sequence of those errors, which we call the bias.
In addition, we model the error’s dynamic part as being indepen-
dent and identically distributed samples from a zero-mean normal
distribution and estimate its variance alongside the bias estimation.
These two types of parameters (i.e., the bias and variance) and addi-
tional convolutive distortion parameters are optimized jointly based
on a maximum likelihood (ML) criterion in the feature domain by
using the clean feature model. Thus, the second step makes the
residual noise feature model consistent with the clean feature model.
Note that the proposed method is different from the method of [3],
which integrates a generalized sidelobe canceller (GSC) and feature
enhancement, in that the proposed method takes the variance and
convolutive distortion into account and that the application range of
the proposed method is not limited to the GSC.

The rest of this paper is organized as follows. Section 2 de-
scribes the requirements that the proposed method imposes on the
multi-microphone signal enhancer. Section 3 describes the problem
addressed in this paper and presents our solution. Section 4 reports
some experimental results, and Section 5 concludes this paper.
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Fig. 1. Block diagram of proposed method.

2. PREREQUISITES

Let sT(t) denote a clean speech signal of a target speaker. In ad-
dition, let xT

1 (t), · · · , xT
M(t) denote M output signals from a multi-

microphone signal enhancer. Superscript T indicates that these vari-
ables are defined in the time domain.

We assume that xT
1 (t) is an estimate of sT(t) and each xT

m(t) sat-
isfying m ≥ 2 is an estimate of all or a part of the environmental
noise. We call this condition the pre-separation condition. As long
as this condition is fulfilled, any algorithms can be used for multi-
microphone signal enhancement performed as a pre-processing step
for the proposed method. We call xT

1 (t) a main signal and {xT
m(t)}m≥2

a set of side signals.
Now, we focus on two example applications to show that the

pre-separation condition is not very restrictive and thus the pro-
posed method has a wide range of applications. The first application
is microphone array-based speech recognition in adverse acoustic
environments. Signal enhancement techniques such as GSC and
independent component analysis (ICA) can be used to reduce the
noise contained in the microphone signals. Nevertheless, since the
enhanced signal still contains non-negligible residual noise due to
such factors as reverberation and speaker movement, compensation
is needed for the residual noise. Fortunately, these techniques can
generate estimates of both the target speaker’s voice and the noise
(or a set of noise components). Therefore, the proposed method can
be used by considering the target voice estimate as a main signal
and the noise estimates as side signals. The second application is
meeting speech recognition using lapel microphones. This scenario
considers a small group meeting where each participant wears a
lapel microphone, and the goal is to recognize each person’s voice
separately. Although each lapel microphone picks up the associated
speaker’s voice with a mid-to-high signal-to-noise ratio (SNR), the
noise, which consists of the other speakers’ voices, has a detrimental
effect on speech recognition. The relatively high SNR means that,
when we recognize a specified speaker’s voice, we can reasonably
consider the signal of the target speaker’s microphone to be the main
signal and the signals of the other speakers’ microphones to be side
signals. Hence, the proposed method can be used to compensate
for the interfering speakers’ voices. The above two application
scenarios are considered in the experiments reported in Section 5.

3. PROPOSED METHOD

Figure 1 shows a block diagram of a feature enhancement process
based on the proposed method. A set of microphone signals is fed

into the multiple microphone-based signal enhancement block to
produce a main signal and a set of side signals. Then, the log mel
frequency spectrum, or the feature, of the main signal is calculated
in the feature extraction block for every short time frame. To high-
light the fact that this main signal’s feature is contaminated by some
residual noise, we refer to this feature as a noisy feature. The main
and side signals are also supplied to the initial noise feature estima-
tion block, which compares the main and side signals to produce a
rough estimate of the sequence of the residual noise features. This
rough estimate is referred to as noise dynamics (the reason for this
will be explained later). Then, the noise feature re-estimation block
refines this rough estimate to yield a set of corruption parameters,
which consists of a sequence of noise models and an estimated set of
convolutive distortion parameters. Finally, the feature enhancement
block removes the effect of the residual noise from the noisy feature
sequence based on the vector Taylor series (VTS) method [1].

In the following, we review the VTS method in Section 3.1. We
then describe the noise feature re-estimation in Section 3.2 and the
initial noise feature estimation in Section 3.3. Note that the role of
the initial noise feature estimation is to calculate the noise dynam-
ics. Although we present a binary mask-based initial noise feature
estimation method in Section 3.3, other algorithms can be used for
implementing this block. This is why we describe the noise fea-
ture re-estimation method in Section 3.2 before presenting our initial
noise feature estimation method.

3.1. VTS feature enhancement

Let sn, j and xn, j denote the log mel frequency spectra (features) of
the clean speech signal sT(t) and the main signal xT

1 (t), respectively,
where n and j are the short time frame and mel frequency band in-
dices, respectively.

VTS feature enhancement calculates a minimum mean square
error (MMSE) estimate of the clean feature sn, j. This is done by
using two models: a clean feature model and a corruption model.

The clean feature model describes prior knowledge about the
clean feature distribution. A GMM is often used as the clean fea-
ture model, thus we have p(sn, j) =

∑K
k=1 πk fN(sn, j; νk, j, τ

2
k, j), where

K is the number of mixture components and fN(x; μ, σ2) denotes
the probability density function (pdf) of the normal distribution with
mean μ and variance σ2. This GMM is trained in advance by using
a corpus of clean speech.

The corruption model characterizes the process in which the
clean feature sn, j is corrupted to become the noisy feature xn, j. The
corruption model takes the form of xn, j = f (sn, j, rn, j, hj), where rn, j is
the unknown noise remaining in xn, j, hj is the unknown convolutive
distortion, and f is a nonlinear function of the form

f (s, r, h) = s + h + log(1 + exp(r − s − h)). (1)

We assume that the convolutive distortion hj is static during obser-
vation. On the other hand, we assume the residual noise rn, j to be
distributed normally with unknown mean μn, j and unknown variance
σ2

j as

p(rn, j) = fN(rn, j; μn, j, σ
2
j ). (2)

Note that μn, j depends on time frame index n, allowing the model
to capture the non-stationary characteristics of the residual noise.
The parameter set, {μn, j, σ

2
j , hj}n∈T, j∈F, of the corruption model is pro-

vided by the noise feature re-estimation block.
With the above clean feature and corruption models, the MMSE

estimate can be calculated by linearizing the nonlinear function f
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around the means of the clean feature and noise models. For more
details, see Section 33.6.2 of [1] and the references therein.

3.2. Noise feature re-estimation

The role of noise feature re-estimation is to estimate the unknown
corruption parameter set consisting of the convolutive distortion pa-
rameters {hj} j∈F, the residual noise means {μn, j}n∈T, j∈F of all time
frames, and the variances {σ2

j } j∈F, where T and F denote the sets
of all time frame indices and all mel frequency band indices, re-
spectively. However, this is unfeasible without any additional infor-
mation since the number of unknown parameters exceeds the size
of the available data X = {xn, j}n∈T, j∈F. Previously proposed monau-
ral feature enhancement methods assume μn, j not to change during
observation or introduce strong dependency between μn, j and μn−1, j

to avoid this problem. But, this prevents μn, j from following fast
changes in noise characteristics.

Our approach is to decompose the mean sequence (μn, j)n∈T into
a dynamics part (r̂n, j)n∈T and a static bias b j as

μn, j = r̂n, j + bj. (3)

The key assumption is that the noise dynamics (r̂n, j)n∈T is obtained
during initial noise feature estimation as a rough estimate of a se-
quence of residual noise features by exploiting the outputs of the
multi-microphone signal enhancement block (i.e., the main and side
signals). The bias bj is needed because the noise dynamics (r̂n, j)n∈T
is calculated without taking a clean feature model into consideration
and thus is inconsistent with the clean feature model.

Owing to this assumption, the problem boils down to a joint
estimation of the convolutive distortion parameters {hj} j∈F, the bi-
ases {bj} j∈F, and the variances {σ2

j } j∈F. Obviously, the number of
unknown parameters is now smaller than the data size.

We solve this parameter estimation problem by maximizing
the likelihood function, p(X;Θ), where Θ is the parameter set
{hj, bj, σ

2
j } j∈F. According to the VTS method, the likelihood func-

tion can be factorized as p(X;Θ) =
∏

n∈T
∏

j∈F
∑K

k=1 πk p(xn, j|k;Θ),
where each constituent pdf is approximated by a Gaussian as

p(xn, j|k, ;Θ) = fN(xn, j;ψn,k, j, υ
2
n,k, j). (4)

The mean ψn,k, j and the variance υ2
n,k, j are calculated as

ψn,k, j = f (νk, j, r̂n, j + bj, hj) (5)

υ2
n,k, j =g(νk, j, r̂n, j + bj, hj)

2τ2
k, j + (1 − g(νk, j, r̂n, j + bj, hj))

2σ2
j , (6)

where g(s, r, h) is the partial derivative of the nonlinear function
f (s, r, h) with respect to s, i.e., g(s, r, h) = 1/(1 + exp(r − s − h)).

To solve this maximum likelihood problem, we use a variant
of the twofold expectation maximization (EM) algorithm [4]. In the
proposed method, the estimation process for the biases and variances
and that for the convolutive distortion parameters are interleaved and
repeated. Here, due to space limitations, we describe only the al-
gorithm for estimating the biases and variances. The algorithm for
estimating the convolutive distortion parameters can be derived sim-
ilarly.

In the proposed bias and variance estimation algorithm, the
GMM component index and the residual noise feature of each time
frame are regarded as latent variables. Let Θ̂ denote a tentative
estimate of Θ. Then, the auxiliary function to be maximized at each
EM iteration is given by

Q(Θ; Θ̂) =
∑
n∈T

K∑
k=1

γn,k(Θ̂)
∫

qn,k, j(r; Θ̂) log fN(r; r̂n, j + bj, σ
2
j )dr. (7)

Here, γn,k(Θ̂) is the conditional posterior probability of the kth GMM
component being active at frame n given Θ̂. qn,k, j(r; Θ̂) is the con-
ditional posterior pdf over the residual noise feature at frame n and
band j given GMM component index k and Θ̂. γn,k(Θ̂) and qn,k, j(r; Θ̂)
are calculated in the E-step as

γn,k(Θ̂) =

∏
j∈F p(xn, j|k; Θ̂)∑K

k=1

∏
j∈F p(xn, j|k; Θ̂)

(8)

qn,k, j(r; Θ̂) = fN(r; κn,k, j(Θ̂), λ2
n,k, j(Θ̂)) (9)

κn,k, j(Θ̂) =r̂n, j + b̂ j + ĝn,k, jσ̂
2
j (xn, j − ψ̂n,k, j)/υ̂

2
n,k, j (10)

λ2
n,k, j(Θ̂) =σ̂2

j ĝ
2
n,k, jτ

2
k, j/υ̂n,k, j (11)

ĝn,k, j =g(νk, j, r̂n, j + b̂ j, ĥ j) (12)

Then, in the M-step, we update the estimates of the bias and variance
for each j ∈ F as

b̂ j =
1
|T|
∑
n∈T

K∑
k=1

γn,k(Θ̂)(κn,k, j(Θ̂) − r̂n, j) (13)

σ̂2
j =

1
|T|
∑
n∈T

K∑
k=1

γn,k(Θ̂)(κn,k, j(Θ̂)2 + λn, j,k(Θ̂)2) − b̂2
j . (14)

3.3. Initial noise feature estimation

The initial noise feature estimation block calculates the noise dy-
namics. The noise dynamics (r̂n, j)n∈T needs to be a good estimate of
a sequence of true residual noise features (rn, j)n∈T up to a static bias.

At the heart of the initial noise feature estimation method pre-
sented here lies the idea that changes in the noise spectrum can be
detected much more easily in the high-dimensional power spectrum
domain than in the low-dimensional feature domain. In light of this,
the method consists of two steps. The first step obtains an estimate
of the noise log power spectrum of each short time frame, which we
represent as R̂n,i, where i is the high-dimensional frequency bin in-
dex. R̂n,i is transformed into a feature vector in the second step, and
the result is used as the noise dynamics component r̂n, j.

The residual noise log power spectrum estimation in the first
step is performed based on the binary mask concept [5], which is
widely employed for single- and multi-channel separation of speech
from highly non-stationary environmental noise such as interfering
human voices. A binary mask An,i is a binary variable that indicates
the presence (0) or absence (1) of target speech at its associated time
frequency point (n, i). Leveraging the pre-separation condition, An,i

is set at 1 if there exists m � 1 such that X1,n,i < Xm,n,i and 0 oth-
erwise. Here, Xm,n,i is the log power spectrum of the mth output
signal of a multi-microphone signal enhancement block (m = 1 cor-
responds to the main signal). By using these binary masks, R̂n,i is
calculated as a locally weighted average of the log power spectra of
the main signal. Specifically,

R̂n,i =

∑ΔT
τ=−ΔT

∑ΔF
φ=−ΔF

An+τ,i+φX1,n+τ,i+φ∑ΔT
τ=−ΔT

∑ΔF
φ=−ΔF

An+τ,i+φ

, (15)

where ΔT and ΔF specify the window for the local averaging. Our
current implementation uses ΔT = 3 and ΔF = 2.

4. EXPERIMENTAL RESULTS

We conducted two experiments to confirm the effectiveness of the
proposed method. As noted in Section 2, the first experiment consid-
ered microphone array-based recognition of digit strings corrupted
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by interfering voices while the second experiment performed large
vocabulary meeting speech recognition. The results of the respective
experiments are reported in Sections 4.1 and 4.2.

4.1. Microphone array-based speech recognition

The purpose of this experiment was to recognize a spoken digit string
corrupted by a different speaker’s voice when a set of two different
mixtures of the target and interfering speech signals was given. The
vocabulary for this experiment was limited to a set of digits to eval-
uate the proposed method with a focus on acoustic factors.

To create each pair of mixed signals, we convolved a pair of
target and interfering speech signals with a two-input two-output
(TITO) room impulse response measured in a room with a reverbera-
tion time of 0.13 s. The room was 4.45 m wide and 3.35 m long with
a 2.5 m high ceiling. To measure the TITO room impulse response
in this room, we used a two-element microphone array placed at the
center of the room and two loudspeakers, one placed to the left of
the microphone array and one to the right, both at an angle of 30 de-
grees. The loudspeakers were 1 m from the microphone array. The
clean subset of the Aurora2 test set was used as the target speech sig-
nals while the interfering speech signals were taken from the TIMIT
corpus. Specifically, we made 4004 pairs of target and interfering
speech signals and convolved each pair with the above TITO room
impulse response to create a pair of mixed signals.

The acoustic model for this experiment was trained on the Au-
rora2 clean training set according to the complex back-end recipe.
Thus, the acoustic model consisted of speaker-independent word
HMMs with 16 states and three Gaussians per state. The acoustic
features consisted of 13 MFCCs augmented with their velocity and
acceleration parameters.

The results were as follows: the word error rate (WER) was
178.25 % when we fed the mixed signals directly into the speech
recognizer. By separating individual digit strings from interfering
voices with frequency-domain ICA [6] before performing speech
recognition, the WER decreased to 25.78 %. This WER was fur-
ther improved down to 3.21 % when we used the proposed method
after the ICA-based source separation. However, when we applied a
single-channel VTS feature enhancement algorithm combined with
an expectation maximization-based noise estimator to the separated
signals, the WER was 20.41 %. The limited improvement provided
by the signle-channel algorithm is attributed to the stationarity as-
sumption made by the noise estimator, which in turn shows that our
proposed method could compensate effectively for the effect of non-
stationary residual interfering speech.

4.2. Meeting speech recognition using lapel microphones

The goal of this experiment was to recognize the voice of each meet-
ing participant wearing a lapel microphone. This experiment was
aimed at evaluating the proposed method in a large vocabulary multi-
speaker speech recognition task.

For this experiment, we recorded 16 sessions of Japanese meet-
ing in two different rooms. 8 sessions were used as a development
data set, and the remaining 8 sessions were used for the test. Each
session involved 4 speakers and lasted approximately 15 minutes.
We manually segmented each session into separate utterances and
each of these utterances were used for evaluation. Our acoustic
model was trained by using the CSJ corpus, which consists of aca-
demic and simulated presentations. For language model training, we
used a set of meeting data excluding the test set, the CSJ corpus,
and sentences extracted from the Web. Our speech recognizer used

for this experiment consists of a discriminatively trained acoustic
model, a Kneser-Ney smoothed word trigram language model, and
a weighted finite state transducer-based decoder. The configurations
of our speech recognizer is almost the same as those used for our
previous meeting speech recognizer, which is described in [7].

The results were as follows: the WER obtained with the raw
data captured by the lapel microphones was 59.6 %. The WER was
reduced to 47.2 % by performing feature enhancement with the pro-
posed method. This result shows that the proposed method can also
be employed for improving meeting speech recognition performance
based on the use of lapel microphones. However, when we used
headset microphones to capture each person’s voice accurately, the
WER was 35.7 %, which indicates the need for further study to close
the gap between the performance when using lapel microphones and
that when using headset microphones. Thorough investigation of the
results of this experiment will be described in a separate paper.

5. CONCLUSION

This paper described a method for estimating a time-varying resid-
ual noise feature model that is needed to compensate for the effect
of significantly non-stationary residual noise in the feature domain.
The noise model consists of a sequence of means and a static vari-
ance for each log mel frequency band. The key feature of the method
is to regard the mean sequence as being composed of noise dynam-
ics and a static bias. The noise dynamics is obtained by exploiting
multiple microphones while the bias is estimated jointly with the
variance and additional convolutive distortion parameters by using a
clean feature model. The proposed method was shown to be effec-
tive in both a microphone array-based speech recognition task and
a lapel microphone-based meeting speech recognition task, which
demonstrates its wide applicability.
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