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ABSTRACT
This paper details one of the front-end components of the sys-

tem used at the PASCAL-CHiME multi-source robust auto-

matic speech recognition (ASR) challenge 2011. The pre-

sented approach uses uncertainty propagation techniques to

integrate conventional beamforming with automatic speech

recognition. The paper addresses the derivation of a complex

Gaussian posterior for the multi-channel Wiener and the delay

and sum beamformer and introduces a new approach based

on the propagation of the Wiener posterior through the resyn-

thesizing process. Results on the PASCAL-CHiME task for

this algorithms show that they consistently outperform con-

ventional beamfomers with a minimal increase in computa-

tional complexity.

Index Terms— Beamforming, Uncertainty Propagation,

Observation Uncertainty, Robust ASR

1. INTRODUCTION

In the past decade a new approach to robust ASR has emerged

that is aimed to propagate the uncertainty in the acoustic fea-

tures due to either the noise effect itself or the residual noise

[1]. Such an approach allows the dynamic compensation of

the acoustic models offering interesting trade-offs in terms of

robustness and computational complexity. Short-time Fourier

(STFT) uncertainty propagation [2] attempts to present a

generic framework for the integration of conventional speech

enhancement in STFT domain and ASR through observation

uncertainty techniques. Such an integration is attained by

considering the STFT after speech enhancement as a ran-

dom variable rather than a deterministic point estimate. This

uncertain description of the spectrum is then transformed,

propagated, into the feature domain yielding a posterior dis-

tribution of the features. This posterior can be combined with

observation uncertainty techniques like front-end uncertainty

decoding [3] or modified imputation [4] for a more robust

ASR.

One of the advantages of uncertainty propagation is that it

can be very easily extended to incorporate expertise of the
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Fig. 1. Left: A noise variance estimate is produced at the

beamforming stage, the STFT posterior is generated with a

single channel MMSE estimator. Right: The STFT posterior

is generated directly at the beamforming stage and propagated

through the ISTFT and STFT. Shaded: Stages through which

there is propagation.

speech enhancement field. This paper explores in particular

the integration of two well established multichannel speech

enhancement techniques, the delay and sum beamformer [5]

and the multichannel Wiener filter [6] with observation un-

certainty techniques. The detailed algorithms form part of the

robust multi-source ASR system presented to the PASCAL-

CHiME challenge 2011 [7] and are here extended to support

an intermediate resynthesizing step, which further broadens

the range of applicable speech enhancement techniques.
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The paper is divided as follows Sections 2 and 3 discuss

the estimation of uncertainty for delay and sum and multi-

channel Wiener beamformers respectively. Section 4 reviews

briefly the propagation of a posterior distribution of the spec-

trum for the selected feature extraction and recognition under

observation uncertainty. Section 5 introduces tests on the

PASCAL-CHiME task and analyzes the results. Finally Sec-

tion 6 presents the conclusions.

2. UNCERTAINTY IN A DELAY AND SUM
BEAMFORMER

The delay-and-sum (DS) beamformer aligns the different mi-

crophone signals to compensate for the different path lengths

from the source to the various microphones. For the proposed

scenario it is assumed that the speaker lies directly in front

of a pair of microphones and thus the DS beamformer can be

reduced to a simple addition of the channels

y(t) = mL(t) +mR(t), (1)

where mL(t) and mR(t) correspond to the left and right

microphone signals. Since such a simple spatial filter can

only partially suppress directional noises, it is often comple-

mented with a second speech enhancement stage. A simple

approach is to employ minimum mean square error (MMSE)

estimators with a complex Gaussian model like the Wiener or

Ephraim-Malah filters [8]. Let Y be a single Fourier coeffi-

cient of the STFT of y(t), this model assumes that Y is the

sum of two hidden random variables X and D, corresponding

to the Fourier coefficients of speech and noise respectively.

These are assumed to be circularly symmetric complex Gaus-

sian random variables with zero mean and variances λX and

λD respectively. Applying the Bayes theorem for this model,

the following complex Gaussian posterior distribution of the

clean STFT is obtained

p(X|Y ) = NC

(
X̂W , λ

)
, (2)

where the mean

X̂W = G · Y =
λX

λX + λD
Y (3)

is the Wiener estimator of the clean Fourier coefficient

and the variance

λ =
λXλD

λX + λD
(4)

is the residual mean square error (MSE) [9]. This poste-

rior yields, in fact, an uncertain description of the clean spec-

trum given the available information and thus can be used for

uncertainty propagation. The only question remaining is how

to determine the a priori variances of each speech and noise

Fourier coefficients λX and λD. Setting these values using

the available information from the beamforming step effec-

tively allows to integrate this pre-processing step with the rest

of the front-end. The limitations of the DS beamformer as

a frequency-space filter are well known, however, in a envi-

ronment with possible directional noises and reverberance it

is very difficult to find a formulation for the estimation un-

certainty. Since the speaker is situated in front of the two

microphones, a simple approach is to consider any asymme-

try between the microphone signals as uncertainty about the

observed spectrum Y 1. One simple measure of asymmetry

can be obtained as

λD =
∣∣∣STFT

{
d̂(t)

}∣∣∣
2

= |STFT {mL(t)−mR(t)}|2 . (5)

The speech variance λX can be then determined by a suit-

able method like the decision directed method [8, Eq. 51].

3. UNCERTAINTY IN A MULTICHANNEL WIENER
FILTER

Rather than using single channel MMSE estimators as a post-

processing stage to a DS beamfomer, a multi-channel Wiener

filter can be used. The most common assumption used to de-

rive this filter is that the noise present in both microphones

has low correlation compared to speech. This leads to the

following approximation of the Wiener gain

G =
λX

λX + λD
≈ 2 · E{MLM

∗
R}

E{|ML|2}+ E{|MR|2} (6)

where ML and MR correspond to the Fourier coefficients

of the left and right microphone signals and ∗ to the com-

plex conjugate operator. In practice the expectations are ap-

proximated by smoothing averages and special corrections

are needed for the complex values arising from the cross-

moment. For this particular implementation the real compo-

nent was selected and negative values were set to zero2.

In order to determine the parameters of the posterior in Eq. 2,

the value of the noise variance λD needs to be determined as

well. Using the same assumption as for the Wiener gain, λD

can be estimated using the power subtraction estimator

λD =
1

2

(
E{|ML|2}+ E{|MR|2}

)
(1−G) (7)

In principle, once the parameters of the posterior have

been determined it could be passed directly to the feature ex-

traction as in [2]. However, as displayed in Fig. 1 right the

multichannel Wiener filter is usually followed by a resynthe-

sizing and posterior STFT. This operation has a notable en-

hancement effect since it smooths out the artifacts caused by

1Note that for a zero mean noise prior λD is related to how uncertain is

that the observed coefficient Y corresponds to X .
2This configuration gave the best results during the PASCAL-CHiME

challenge preparation.
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the imperfect estimation in Eq. 6. In order to compute the

posterior after ISFTF and STFT, the solution proposed for the

PASCAL-CHiME Challenge was to derive the Wiener filter

parameters from the Equivalent gain after these transforma-

tions [7]. Although effective, this is an ad hoc solution. This

paper introduces an alternative approach in which the pos-

terior obtained from the Wiener filter is propagated through

the ISTFT and STFT transforms as in Fig. 1, right. This

can be attained by joining all the linear operations involved

in the ISTFT and STFT, including windowing and complex

conjugate operations, into one single matrix3 If the correla-

tions induced by the intermediate operations like overlap and

add are ignored, a simple linear closed form solution for the

propagated variances can be attained.

4. UNCERTAINTY PROPAGATION AND DECODING

For a complex Gaussian posterior as that of Eq. 2 there exist

very fast closed form solutions for the propagation through

the Mel-Cepstral, perceptual linear prediction and other fea-

ture extractions [2]. In all these cases the resulting posterior

at feature domain is well approximated by a Gaussian distri-

bution

p(x|Y ) ≈ N (μx,Σx) (8)

In case of propagating the posterior associated to a Wiener

filter it can be also demonstrated that μx is an approximate

MMSE estimator of the features and Σx the corresponding es-

timation variance [10]. This variance can be then utilized with

observation uncertainty techniques to further improve ASR

robustness. The most often used approach for this matter is

front-end uncertainty decoding (UD), which simply adds the

uncertainty variances Σx to the acoustic model variance [3].

An alternative approach, which consistently shows a better

performance in combination with uncertainty propagation, is

modified imputation (MI) [4] which re-estimates the features

based on the uncertainty to acoustic model variance ratio as

x̂ =
Σq

Σq +Σx
μx +

Σx

Σq +Σx
μq, (9)

where μq and Σq correspond to the mean and variance of

each mixture. MI also has lower computational complexity

than UD since it does not require the re-computation of the

mixture determinant.

5. EXPERIMENTAL RESULTS

In order to test the efficiency of the proposed approaches the

PASCAL-CHiME challenge task was used. This recently

created corpus [11] provides a realistic scenario for binaural

3In practice this is separated into various matrices for real and imaginary

components. Pre-emphasis was also ignored since it excessively increased

high frequency variances.

automatic speech recognition in room environments. The

task is derived from the GRID corpus by convolving clean

speech with real room impulse responses as well as adding

various noise sources at different spatial localizations. Train

data is clean but reverberated and the final test set includes a

slightly different room impulse response. The feature extrac-

tion used was amplitude based Mel-Cepstral coefficients with

cepstral mean subtraction. As recognition engine a modified

version of HTK capable of performing uncertainty decoding

and modified imputation was used. The HTK training, testing

and scoring scripts provided in the challenge were used.

For the case of the DS beamfomer using channel asymmetry

as noise estimate, conventional WIENER and MMSE esti-

mators of the amplitude (MMSE-STSA) and log amplitude

(MMSE-LSA) were compared against uncertainty propaga-

tion (MMSE-MFCC) with and without MI and UD. The mul-

tichannel Wiener approach was compared with uncertainty

propagation also with MI and UD alternatives. Two forms of

determining uncertainty where compared, the equivalent gain

after STFT proposed in [7] (EQWIN) and the propagation

through ISTFT proposed in this paper (IDFTUP).

Table I displays the results of the DS experiments. As ex-

pected the use of MMSE post-processing greatly reduces the

Word Error Rate (WER) of the baseline with MMSE-LSA

showing the best performance on average. The aggressiveness

of the Wiener filter also provides a positive trade-off for low

SNRs. When used alone, the MMSE-MFCC estimator pro-

vides a performance lower than that of the MMSE-LSA but

when combined with UD and particularly MI it outperforms

all other methods. The results of the multichannel Wiener

experiments are displayed in Table II and present a similar

tendency. The use of UD and MI considerably improve the

baseline values although the multichannel Wiener is far more

effective than the DS in removing distortions. The proposed

IDFTUP fails to outperform the previous uncertainty esti-

mation method although it presents a better behavior at low

SNR. A reason for this could be that proposed solution is an

approximate propagation of the MSE, which does not include

errors in the estimation of a priori parameters λD or λX . The

ad hoc solution on [7] might however partially compensate

for this fact.

6. CONCLUSIONS

Two possible approaches for the integration of beamforming

and observation uncertainty techniques have been analyzed in

detail and a new approach that allows an intermediate resyn-

thesizing step has been introduced. The proposed methods

show a notable improvement over conventional beamforming

approaches with a low increase in computational complex-

ity. The estimation of uncertainties at the beamforming stage

need however to be further studied to include errors in the

estimation of a priori information.
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Table 1. WER [%] and relative error reduction with respect to baseline for the delay and sum beamformer

-6db -3db 0dB 3dB 6dB 9dB ∞ r.r.[%]

Delay and Sum+MMSE-MFCC+MI 57.2 47.1 36.2 23.4 15.5 9.9 5.8 -28.4
Delay and Sum+MMSE-MFCC+UD 58.3 48.9 37.2 24.8 16.7 10.3 6.3 -24.8

Delay and Sum+MMSE-LSA 59.2 50.9 38.7 26.2 17.6 10.7 5.8 -23.7

Delay and Sum+MMSE-MFCC 59.6 50.1 38.2 25.7 18.2 10.8 6.4 -22.2

Delay and Sum+MMSE-STSA 59.4 53.0 42.6 27.9 18.7 11.8 5.2 -21.1

Delay and Sum+Wiener 53.9 47.1 34.6 24.5 18.4 13.4 7.6 -20.6

Delay and Sum 66.3 58.7 45.9 34.0 22.1 13.8 5.6 -10.6

Baseline (single channel) 68.4 62.6 51.7 37.6 25.8 16.2 6.6 0

Table 2. WER [%] and relative error reduction with respect to baseline for the multichannel Wiener

-6db -3db 0dB 3dB 6dB 9dB ∞ r.r.[%]

Multi-Channel Wiener+EQWIN+MMSE-MFCC+MI 52.9 44.2 31.4 20.2 13.8 9.3 5.5 -34.7
Multi-Channel Wiener+IDFTUP+MMSE-MFCC+MI 51.7 42.5 30.0 20.2 13.4 9.7 6.8 -32.9

Multi-Channel Wiener+IDFTUP+MMSE-MFCC+UD 53.8 43.1 30.4 21.8 13.8 10.6 7.0 -30.1

Multi-Channel Wiener+EQWIN+MMSE-MFCC+UD 54.5 45.8 33.3 22.2 14.6 10.5 6.4 -29.2

Multi-Channel Wiener+IDFTUP+MMSE-MFCC 53.7 44.2 30.9 22.3 14.2 10.6 7.1 -29.1

Multi-Channel Wiener+EQWIN+MMSE-MFCC 56.1 48.2 34.5 23.6 15.8 10.8 6.9 -25.5

Multi-Channel Wiener 56.6 48.5 33.9 22.1 15.3 11.4 7.2 -25.0

Baseline (single channel) 68.4 62.6 51.7 37.6 25.8 16.2 6.6 0
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