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ABSTRACT

Commonly used feature extraction methods for automatic speech
recognition (ASR) incorporate only rudimentary psychoacoustic
findings. Several works showed that a physiologically closer audi-
tory processing during the feature extraction stage can enhance the
robustness of an ASR system in noisy environments. The “auditory
image model” (AIM) is such a more sophisticated computational
model. In this work we show how invariant integration can be ap-
plied in the feature space given by the AIM, and we analyze the
performance of the resulting features under noisy conditions on the
Aurora-2 task. Furthermore, we show that previously presented fea-
tures based on power-normalization and invariant integration benefit
from the AIM-based integration features when the feature vectors
are combined with each other.

Index Terms— Robust speech recognition, auditory processing,
feature extraction, invariant integration

1. INTRODUCTION

For automatic speech recognition (ASR) systems, mel frequency
cepstral coefficients (MFCC) [1] are well established speech signal
representations and are used in many state-of-the-art ASR systems.
The methods used for their extraction are mainly based on traditional
engineering techniques and incorporate only rudimentary psychoa-
coustic findings. Besides speaker-extrinsic sources of variability like
environmental noise or transmission-channel characteristics, there
is the vocal-tract length (VTL) as one speaker-intrinsic variability
that an ASR system has to deal with [2]. Different approaches
that enhance the robustness of speaker-independent ASR systems
are commonly part of practical ASR systems. While vocal-tract
length normalization (VTLN) [3] normalizes the features extracted
by the front-end, maximum likelihood linear regression (MLLR) [4]
transforms the parameters of the acoustic models to better represent
the characteristics of the individual speakers. Another group of
methods tries to directly extract invariant features from the speech
signal, using transforms that are invariant to the effects of VTL
changes [5, 6, 7, 8].

With ASR systems still not reaching the recognition perfor-
mance of human listeners, a more detailed imitation of the processes
within the auditory system promises to further enhance the per-
formance of ASR systems under certain conditions, e.g., noisy
conditions [9]. The auditory image model (AIM) [10] tries to sim-
ulate the auditory processing of speech signals as they proceed up
to the cochlear nuclei. As pointed out by [9] and described in more
detail in the following, translation-invariant transforms fit well into
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the theoretic framework of the AIM and could be used to extract
features with more robustness to VTL differences. We show how
invariant-integration can be applied in the transform space of the
AIM and analyze the performance of the resulting features under
noisy conditions. Furthermore, we show that a recently presented
combination of power normalization and invariant integration [11]
benefits from the AIM-based IIFs when combining the feature types.

The article is organized as follows: The next section describes
the general structure of the feature extraction and application of in-
variant integration within the signal space of the AIM. In Section 3
the experimental setup and results are presented. Discussion and
conclusions are given in the last section.

2. THE AUDITORY IMAGE MODEL AND INVARIANT
INTEGRATION

2.1. The Auditory Image Model

The AIM is a computational model that simulates human auditory
processing. It aims to convert the speech signal into the perception
that a human initially has before any semantic meaning is associated
with the signal. The AIM is divided into several modules, which
have either physical or psychoacoustic analogies. An illustration of
the core structure of the AIM is shown within the gray shaded region
in Fig. 1. A central element of the AIM is the strobed temporal in-
tegration stage whose functionality is comparable to that of a sparse
autocorrelation function driven by the onsets of glottal pulses [12, 9].
The output of this stage is called stabilized auditory image (SAI)
which yields a two-dimensional signal representation for every con-
sidered time step (see also Fig. 2). One dimension of the SAI is
indexed by the subband number, and the second dimension by time
intervals relative to the strobe-times index.

The effects of different VTLs within the SAI space have been
analyzed in detail in [13], where it is shown that the {scale, time}-
space of the SAI is scale covariant. This means that a change of the
VTL leads to a shift along the subband axis, as well as to a scaling
along the time-interval axis. The scaling is caused by the different
lengths of the impulse responses of the filters.

The AIM has proved to yield beneficial auditory representations
for various speech processing tasks: In [7] the AIM was used to ex-
tract low-dimensional features for speech recognition that are more
robust to VTL changes than MFCC features on a synthetic speech
corpus. In another work [12], sparse codes from the SAI were com-
puted and used for sound retrieval and ranking. There exist different
publicly available implementations of the AIM. Here, we used the
Matlab version [14]. In the next section we describe how the scale
covariant space of the SAI can be transformed to a scale/VTL invari-
ant space with the help of invariant integration.
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Fig. 1. Overview of the modular structure of the auditory image
model (AIM, gray shaded area) [10], which consists of the pre-
cochlear processing (PCP, not used in this work) module, basilar
membrane motion (BMM) module, neural activity pattern (NAP)
module, and the strobed temporal integration (STI) module, which
makes use of a preceding strobe detection method.
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Fig. 2. Visualization of sequence of stabilized auditory im-
ages (SAIs) of a speech signal.

2.2. AIM-based Features for ASR with Invariant Integration

Cepstral coefficients are used in many state-of-the-art ASR systems
due to their good performance and their efficient computation that
involves only a few parameters. However, with respect to speaker
independence, the cepstral analysis with an auditory filter bank has
the disadvantage that different VTLs lead to translations along the
subband axis, while the discrete cosine transform (DCT) is not
translation invariant. Thus, the same phoneme uttered from two
vocal tracts with different lengths do not yield the same point in
the MFCC space. Generally speaking, a feature extraction method
should only extract information that is necessary for separating the
individual classes of interest and, at the same time, be invariant to the
effects of other variabilities. Using the AIM for feature extraction
for noise-robust ASR can further be motivated by the observations
made in [9], were SAI-based features showed a larger noise ro-
bustness than MFCCs (while performing worse under clean-speech
conditions).

Invariant integration is a constructive approach for computing

separable features that are invariant to a designated group of trans-
formations. For its application in speaker-independent ASR tasks,
so-called invariant-integration features (IIFs) were described in de-
tail in [8]. The key concept of the IIFs is their invariance to trans-
lations along the subband axis. Motivated by the observation that
the SAI space is scale covariant, we propose a new definition for
invariant-integration features based on the SAI space in this work.
Therefore, one has to integrate over the induced transformation due
to different VTLs in this space. In the following, we first give a short
formal introduction to IIFs based on a standard mel or gammatone
filter bank. With the then introduced terms, it is described afterwards
how SAI-based IIFs can be computed.

We follow the notation as introduced in [8]: Let vk(n) denote
the TF representation of a speech signal, where n is the time index,
1 ≤ n ≤ N , and k is the subband index with 1 ≤ k ≤ K. We
define the vectors k = (k1, k2, . . . , kM ) and l = (l1, l2, . . . , lM ),
containing element indices and integer exponents with k ∈ N

M and
l ∈ N

M
0 , respectively. Furthermore, let m ∈ Z

M be a vector con-
taining temporal offsets. Now, we define a contextual monomial m̂
with M components as

m̂(n;w,k, l,m) :=

[
M∏
i=1

vliki+w(n+mi)

]1/γ(l),

(1)

where γ(l) :=
∑M

i=1 li is a normalizing term and is referred to as the
“order of the monomial”. Also, w ∈ N0 is a spectral offset parameter
that is used for ease of notation in the following definitions. Now, a
single IIF is defined as

Am̂(n) :=
1

2W + 1

W∑
w=−W

m̂(n;w,k, l,m), (2)

with W determining the window size. An adequately chosen IIF set
of size F ,

A := {Am̂1 , Am̂2 , . . . , Am̂F }, (3)

yields features that, on the one hand, are invariant to the translations
as (approximated) spectral effects due to VTL changes, and, on the
other hand, allow for discriminating between the individual classes.
For determining the parameters of a set of IIFs an iterative feature
selection method is used that is based on a linear classifier [8].

To apply the invariant integration approach within the SAI space,
one has to integrate over the induced transformation due to different
VTLs within the SAI space. That is, the scaling effect between the
subbands with different VTLs has to be considered. This relation can
be described with the product of time interval and center frequency
of the individual subbands being constant [15]: Let ṽk(n, τ) denote
the SAI value at time instance n, with k being the subband index,
and τ being the time interval. Furthermore, let c = (c1, c2, . . . , cK)
denote the center frequencies of the filters. Now, for a given subband
index i ∈ N and a cycle number p ∈ R

+,

τi(p) :=
p

ci
(4)

defines the time interval for each subband, which corresponds to the
same cycle for all impulse responses. Now, the SAIs of the same
utterance from two speakers A and B with different VTLs are related
by

ṽAi (n, τi(p)) = ṽBi+αT
(n, τi+αT (p)), (5)
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where αT is proportional to the ratio between the VTLs of A and
B. Thus, a change of VTL leads to a shift of the formants along
ridges which pass through the same cycles of the impulse responses
of all subbands. In [13, 15] the representation of the SAI in this
{scale-cycle}-space is called size-shape image (SSI). The SSI space
is scale-shift covariant, which means that the effects due to different
VTLs appear solely as translations along the subband axis.

Now, let p = (p1, p2, . . . , pM ) contain cycle numbers. We de-
fine a monomial m̃ on base of the SAI space as

m̃(n;w,k, l,m,p) :=

[
M∏
i=1

ṽliki+w(n+mi, τki+w(pi))

]1/γ(l)

.

(6)

With the definition from Eq. (6), a feature component Am̃(n) is then
computed as defined in Eq. (2). The features based on the SAI will
be referred to as AIM-IIFs in the following. We have used linear
interpolation in this work to compute ṽi(n, τi(p)).

The idea of applying an invariant transform on the SAI was also
part of [15], were an adapted form of the Mellin transform was used
to compute a VTL-invariant representation of speech signals: The
Mellin image [15] is essentially the magnitude of the Fourier trans-
form of the corresponding SSI vector and, thus, is also translation in-
variant. However, compared to the approach proposed in this work,
the Mellin image has at least two disadvantages: Though invariant to
translations, the magnitude of the Fourier transform is also invariant
to additional transformations like mirroring. Also, the data rate of
the Mellin image is as high as the one of the SAI and, thus, would
need to be reduced prior to be fed into an ASR system. A benefit
of the IIFs is that only selected segments of constant cycle numbers
need to be considered, so that a transformation of the complete SAI
into an SSI is not necessary. Furthermore, the extraction of AIM-
IIFs also leads to a significant reduction of the data rate, which is
comparable to that of cepstral features.

3. EXPERIMENTS

3.1. Experimental Setup and Baselines

Experiments have been conducted on the Aurora-2 task. We used
the standard training and test sets as they are published together with
the corpus data. These include utterances with signal-to-noise ra-
tios (SNR) of 20, 15, 10, 5,0, and -5 dB. Both clean speech and
multi-condition training were considered. Average accuracies of all
three test sets are shown in the following. Throughout the experi-
ments, the same HTK-based back-end was used. Whole-word left-
to-right models with 11 to 17 states depending on the average ut-
terance lengths of the digits were used. Four Gaussians were used
in the mixtures of the individual states, and the covariance matrices
were constrained to be of diagonal form. All features were extracted
with a frame rate of 100 Hz. First- and second-order time-derivative
approximations were appended to all feature vectors. In case of in-
tegration features, a linear discriminant analysis (LDA) with a tar-
get dimensionality of 55 followed by a maximum-likelihood linear
transform (MLLT) [16] was computed to reduce the feature vec-
tor dimensionality. The target dimensionality of 55 was empirically
chosen in preliminary experiments.

Baseline accuracies were generated with MFCCs using the stan-
dard setup of HTK together with cepstral mean subtraction and also
with power-normalized cepstral coefficients (PNCC) [17] as sec-
ond feature type. PNCCs are cepstral coefficient-based features that
can efficiently be computed and have recently shown a comparable

Table 1. Baseline accuracies [%] for MFCCs and PNCCs for clean
and multi-condition training on Aurora-2

SNR clean multi-condition
(dB) MFCC PNCC MFCC PNCC
∞ 98.6 98.6 98.4 98.0
20 96.8 97.7 97.9 97.7
15 93.0 95.7 96.8 97.0
10 78.1 90.1 93.9 95.1
5 51.2 75.7 85.2 88.3
0 26.3 49.1 65.1 72.1
-5 12.2 21.9 31.1 40.2

Avg. 65.2 75.5 81.2 84.1

Table 2. Accuracies [%] for IIFs, PN-IIFs, and AIM-IIFs for clean
and multi-condition training on Aurora-2

SNR clean multi-condition
(dB) IIF IIFPN IIFAIM IIF IIFPN IIFAIM

∞ 99.2 98.8 98.5 98.7 98.9 98.5
20 97.8 97.8 97.4 98.3 98.5 98.2
15 95.4 96.0 95.2 97.4 97.9 97.6
10 89.5 91.0 88.0 95.6 96.0 95.7
5 72.8 77.7 70.1 89.2 90.3 88.9
0 41.0 50.4 40.5 68.1 72.9 67.4
-5 14.0 22.1 17.3 31.0 39.1 29.6

Avg. 72.8 76.2 72.4 82.6 84.8 82.3

noise-robustness in comparison to feature enhancement methods like
Vector-Taylor series expansion or SPLICE. The results of these two
feature types for both training modes are shown in Table 1.

The results clearly show the advantage of PNCCs compared to
MFCCs under noisy conditions. While performing similar in case
of clean speech, the PNCC-based ASR system achieves accuracies
that are increasingly better in terms of accuracy the lower the SNR
becomes. This holds for clean speech training as well as for multi-
condition training and supports the results from [17]. To allow for a
comparison with integration-based features, we show accuracies of
IIFs [8] and PN-IIFs [11] in Table 2. PN-IIFs combine the meth-
ods for increasing the noise robustness of the PNCCs with invariant
integration, which further increases the robustness to the effects of
VTL differences. Table 2 also shows the results for the AIM-IIFs.
For the feature selection, the same method as for the “standard” IIFs
was used. We selected sets of 30 AIM-IIFs with the constraint of us-
ing only at most a cycle number of three. This constraint was used,
because the glottal pulse rate imposes an upper limit for the time-
interval before resonance and pulse information are superimposed in
this space [13, 15].

The IIF-based ASR system achieves accuracies that are higher
than the MFCC-based system for all SNRs and for both training con-
ditions. In comparison to PNCCs, however, they do not perform as
well, which was also observed in [11] and motivated PN-IIFs. PN-
IIFs perform better than IIFs under all SNRs and better than PNCCs
for SNRs down to 5 dB for both training modes. A reason for the
abrupt decrease of accuracy for lower SNRs in case of the PN-IIFs
might be the fact that the reduction matrix, which is estimated with
LDA on the training data, does not generalize well for noise scenar-
ios with very low SNRs. Also, the parameters chosen for the power-
normalization feature-enhancement stage might still not be optimal.
A comparable performance of these feature types was also observed
on artificially distorted TIMIT speech signals as presented in [11].
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Table 3. Accuracies [%] for AIM-IIFs combined with originally pro-
posed IIFs, PNCCs, and with PN-IIFs for clean and multi-condition
training on Aurora-2

clean multi-condition
SNR IIFAIM IIFAIM
(dB) +IIF +PNCC +IIFPN +IIF +PNCC +IIFPN

∞ 99.2 99.0 99.0 98.8 98.7 98.9
20 97.9 97.8 98.2 98.2 98.2 98.5
15 96.0 96.5 96.7 97.4 97.6 98.0
10 90.9 92.3 92.6 95.5 96.2 96.4
5 77.3 81.1 81.3 89.8 91.3 91.6
0 48.4 54.7 57.0 71.9 75.5 76.4
-5 17.9 21.7 26.3 33.9 39.8 43.4

Avg. 75.4 77.6 78.7 83.7 85.3 86.2

3.2. Results for AIM-IIFs and Feature Combinations

The AIM-IIF-based ASR system shows a comparable performance
to the IIF-based system for both training conditions in Table 1. In [9]
it was observed that SAI-based features yield a higher robustness un-
der noisy conditions compared to MFCCs, while performing worse
under clean conditions. This cannot be observed for the results in
Table 2. However, due to the different way of processing the speech
signal in comparison to the standard filter banks, we assume that
SAI-based signal representations are prone to different kinds of er-
rors. Thus, we investigated if a combination of AIM-IIF vectors
together with IIF, PNCC, or PN-IIF feature vectors yields an en-
hancement in accuracy. In contrast to ROVER, this approach has the
advantage that only a single ASR system is used. Again, we used
LDA and MLLT to reduce the resulting feature dimension down
to 55 and to decorrelate the features. The results of these experi-
ments are shown in Table 3. It can be observed that the concatena-
tion of all three feature types with AIM-IIFs generally increases the
accuracy. Combining AIM-IIFs and PN-IIFs into one feature vec-
tor yields the highest accuracies within the experiments of this work
and gives average accuracies (over all SNRs) of 78.7% and 86.2%
for clean speech and multi-condition training, respectively.

4. CONCLUSIONS AND OUTLOOK

The AIM is a computational model of the human auditory process-
ing pathway, which represents a speech signal at every time instance
within a two-dimensional space that is scale covariant. Motivated
by other works that used the SAI as basis for extracting features for
ASR, we showed how the concept of invariant-integration can be ap-
plied within the SAI-space. We conducted ASR experiments under
different noise conditions on the Aurora-2 task. When used as sole
features, the SAI-based IIFs (“AIM-IIFs”) performed equally well
compared to other state-of-the-art feature types. The significant in-
crease in accuracy when combined with another integration-based
feature type, however, suggests that the AIM-IIFs yield complemen-
tary information compared to the other integration feature types.

The parameters of the AIM offer a high degree of freedom.
Though empirically determined in preliminary experiments, the
used parameters for the AIM might still have room for optimiza-
tion. Also, future work will investigate different reduction methods,
which might perform better than LDA under noisy conditions.
Due to the artificially distorted utterances of Aurora-2, this work
can only be seen as a proof of concept. An evaluation on more
naturally distorted speech would also take other effects, e.g., the
Lombard effect, into account and is part of future work. A tool for
the computation of IIFs can be downloaded at http://www.isip.uni-
luebeck.de/downloads.
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