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ABSTRACT

Feature mapping technique is widely used to eliminate the

mismatch between the training and test conditions of speech

recognition. In the feature mapping, a target (mismatched)

feature vector sequence is mapped closer to the corresponding

reference (matched) feature vector stream. The training of the

mapping system is usually carried out based on a set of stereo

data which consists of simultaneous recordings obtained in

both the reference and target conditions. In this paper, we

propose a novel approach to blind parameter estimation which

does not require the reference feature vectors. The proposed

approach is motivated by the hidden Markov model (HMM)-

based speech synthesis algorithm.

Index Terms— Robust speech recognition, feature map-

ping, blind estimation

1. INTRODUCTION

In general, the performance of a speech recognition system

degrades when there is a mismatch between test and train-

ing conditions. There are several factors that lead to acoustic

mismatch such as the background noise, different audio de-

vices, reverberations, data compression modules, etc. In or-

der to ameliorate the degradation in recognition performance,

feature mapping techniques have been frequently applied [1]-

[9]. In the feature mapping techniques, the signal waveforms

or feature vectors are enhanced during front-end processing.

Depending on the type of training or adaptation data, pa-

rameter estimation approaches for feature mapping can be di-

vided into stereo-based and blind techniques. Stereo-based

technique is applied when there exists a database of simul-

taneous recordings obtained in both the reference and target

conditions, and feature mapping rules are derived from the

difference between the pair of feature vectors [1]-[5]. In the

blind technique, on the other hand, only the input feature vec-

tors are given and the information related to the target fea-

ture vectors is usually provided by statistical models such as

the Gaussian mixture model (GMM), hidden Markov model
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(HMM) and switching linear dynamic model (SLDM) [6]-[8].

In general, feature mapping for the blind technique is done

based on either the minimum mean square error (MMSE) or

the maximum likelihood (ML) criterion. In our recent study,

we proposed a stereo-based feature mapping approach based

on the switching linear dynamic system (SLDS) [4], [5]. One

of the prominent advantages of the SLDS is that it enables a

systematic implementation of sequence-to-sequence mapping

instead of the traditional vecto r-to-vector mapping [3].

In this paper, we propose an approach to blind estimation

for the speech feature mapping algorithms which originally

require stereo data for their parameter training. In the pro-

posed method, an artificial reference feature vector sequence

are generated from the HMM and then applies it to a con-

ventional stereo-based technique. Our approach is motivated

by the speech feature generation method employed in HMM-

based speech synthesis [10]. In order to further improve the

performance of the feature mapping system, we also propose

to interpolate the feature vector streams generated through the

HMM with those obtained from the output of a conventional

feature compensation algorithm. The proposed blind estima-

tion technique was applied to a task of speech recognition

over the Aurora-5 DB and has demonstrated a remarkable per-

formance improvement.

2. STEREO-BASED FEATURE MAPPING

Suppose that we have two simultaneous recordings of the

same speech realizing a word sequence: one is obtained in the

target (mismatched) and the other in the reference (matched)

conditions. Let xT
1 = (x′

1 x′
2 · · · x′

T )′ be the sequence of

feature vectors of length T extracted from the recording ob-

tained in the target condition with the prime denoting the

transpose of a vector or a matrix, and xt ∈ Rd represent

the feature vector at time t. In a similar way, yT
1 = (y′

1 y′
2

· · · y′
T )′ represents the corresponding sequence of feature

vectors obtained in the reference condition. In the feature

mapping approaches, a feature vector sequence xT
1 obtained

in the mismatched condition is mapped to a feature sequence

ŷT
1 = (ŷ′

1, ŷ′
2, · · · , ŷ′

T )
′ which is considered a promising

counterpart in the matched condition.
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A variety of feature mapping techniques have been pro-

posed in the past to compensate the mismatch between the

training and test conditions. Recently, we proposed the

SLDS-based feature mapping technique, which systemat-

ically implements a sequence-to-sequence mapping in con-

trast to the conventional vector-to-vector mapping approaches

[4]. In this section, we briefly review the SLDS which is a

sequence-to-sequence mapping technique including most of

the conventional vector-to-vector mapping approaches as its

special cases [5].

In the SLDS, the output feature vector sequence yT
1 is as-

sumed to be generated from the input feature vector stream

xT
1 by switching K different linear dynamic systems (LDS’s)

[5]. When the k-th LDS is applied, the feature mapping pro-

cess is approximated by following

zt+1 = Akzt +Bkxt +mu,k (1)

ŷt = Ckzt +Dkxt +mw,k (2)

where zt denotes the hidden state of the system at time t and

λk = {Ak, Bk, Ck, Dk, mu,k, mw,k} are the LDS parameters

to be estimated. If the a posteriori probability of each LDS is

available, we can employ a soft-decision scheme which mod-

ifies (1) and (2) into

zt+1 =

K∑
k=1

p (k|xt) [Akzt +Bkxt +mu,k] (3)

ŷt =

K∑
k=1

p (k|xt) [Ckzt +Dkxt +mw,k] (4)

where p (k|xt) represents the posterior probability of the k-th

LDS. Interested readers are referred to [4], [5] for more detail.

3. ARTIFICIAL STEREO DATA GENERATION

In the stereo-based approaches such as SLDS, in order to es-

timate the relevant parameters, a set of stereo data has to be

given. This means that for each target feature vector sequence

xT
1 we have the corresponding reference feature vector se-

quence yT
1 . The two feature vector sequences, xT

1 and yT
1 are

extracted from simultaneous recordings of the same speech.

However, in the blind technique, the actual reference feature

vector sequence yT
1 is unavailable and all that we have are the

target feature vector sequence xT
1 and a statistical model for

yT
1 . In this section, we propose novel approaches to generate

artificial reference feature vector stream. Once the artificial

reference feature vector sequence is generated for each tar-

get feature vector sequence, a conventional stereo-based tech-

nique can be straightforwardly applied to estimate the map-

ping parameters.

3.1. Artificial reference feature generation from HMM

Suppose that the statistical model for yT
1 is given by an HMM.

Then the HMM, Λy which characterizes the statistical proper-

ties of yT
1 is assumed to consist of S states and the observation

distribution at each state is given by a Gaussian mixture model

(GMM). Conventionally in speech recognition, the HMM Λy

is defined over an extended feature vector to account for both

the static and dynamic characteristics simultaneously. Let yt

be an original reference static feature vector at time t. Then,

the extended feature vector ỹt is formed by appending dy-

namic features e.g., Δ- and ΔΔ-cepstra to yt as follows:

ỹT
1 =

⎡
⎢⎢⎢⎣

ỹ1

ỹ2

...

ỹT

⎤
⎥⎥⎥⎦ = WyT

1 =

⎡
⎢⎢⎢⎣

W1

W2

...

WT

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1

y2

...

yT

⎤
⎥⎥⎥⎦ (5)

where W is a constant matrix, and

ỹt = Wty
T
1 . (6)

Generation of an artificial reference feature vector se-

quence is motivated by the speech feature generation tech-

nique in HMM-based speech synthesis [10]. In HMM-based

speech synthesis, the goal is to find an optimal feature vector

sequence given the HMM parameters in the ML sense, i.e.,

ŷT
1 = argmax

yT
1

log p
(
yT
1 |Λy

)
. (7)

For a specific state sequence sT1 = (s1, s2, · · · , sT ) and a

mixture component sequence mT
1 = (m1, m2, · · · , mT ), the

log likelihood can be calculated due to the relation between

yT
1 and ỹT

1 as given by (6) as follows:

log p
(
yT
1 |sT1 ,mT

1 ,Λy

)
= −1

2

T∑
t=1

(
Wty

T
1 − μ̃st,mt

)′
Σ̃−1

st,mt

(
Wty

T
1 − μ̃st,mt

)
+ Const. (8)

where μ̃st,mt and Σ̃st,mt indicate respectively mean vector

and covariance matrix of mt-th Gaussian mixture at state st.
Since it is practically difficult to solve (7) directly, we apply

the EM algorithm which iteratively updates the estimate for

yT
1 . Let ȳT

1 = (ȳ′
1 ȳ

′
2 · · · ȳ′

T )′ be the estimate for yT
1 obtained

at the previous iteration. Then, at each iteration of the EM

algorithm it is updated in the following way:

ŷT
1 = argmax

yT
1

E
[
log p

(
yT
1 |sT1 ,mT

1 ,Λy

) |ȳT
1 ,Λy

]
(9)

where ŷT
1 = (ŷ′

1 ŷ′
2 · · · ŷ′

T )′ indicates the updated sequence

of the reference feature vectors and E [·] represents the expec-

tation operation.

In order to solve (9), we first compute the a posteriori

probability of each Gaussian component, {γt (s,m)}. It can

be efficiently obtained by means of the forward-backward al-

gorithm or can be approximated with the use of the Viterbi
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algorithm. After {γt (s,m)} are computed, the updated ref-

erence feature vector sequence is derived as follows [10]:

ŷT
1 =

(
T∑

t=1

S∑
s=1

M∑
m=1

γt (s,m)W′
tΣ̃

−1
s,mWt

)−1

×
(

T∑
t=1

S∑
s=1

M∑
m=1

γt (s,m)W′
tΣ̃

−1
s,mμ̃s,m

)
(10)

where M and S indicate the total number of Gaussians and

states in Λy , respectively.

3.2. Combination with feature compensation technique

One of the drawbacks of the approach proposed in (10) is

that the generated feature vector sequences will tend to be-

come similar if we obtain similar alignments for the HMM

states and mixture components even though they show quite

different characteristics in the original feature domain. This

phenomenon may mislead parameter estimation of the feature

mapping techniques.

In order to alleviate this problem, it is useful to apply

a feature compensation algorithm where an estimate for the

clean speech feature is derived by taking advantage of a

speech corruption model. Let ŷFC
t denote an estimate for yt

obtained from a feature compensation algorithm and ŷHMM
t

be the corresponding vector derived from the HMM as shown

in (10). Then, one of the simplest ways to generate the artifi-

cial reference feature vector ŷt is to interpolate between ŷFC
t

and ŷHMM
t such that

ŷt = ρŷFC
t + (1− ρ) ŷHMM

t (11)

where ρ ∈ [0, 1] is an interpolation weight. It is important

that the interpolation weight ρ should account for the vari-

ance of ŷFC
t , which can be treated as a measure of uncertainty

for the output of the feature compensation algorithm. Sim-

ilar strategies are often employed in the uncertainty decod-

ing techniques where the back-end recognition parameters are

modified depending on the uncertainty measure provided by

the front-end module [11].

4. EXPERIMENTS

Proposed approach was applied to the task of speech recog-

nition with the Aurora-5 DB which was developed to inves-

tigate the influence on the performance of automatic speech

recognition for a hands-free speech input in noisy room envi-

ronments [12]. Furthermore in Aurora-5, two test conditions

are included to study the influence of transmitting the speech

in a mobile communication system. The number of test utter-

ances was 8700 for each test condition.

In the experiments, we focused on the performance of

the speech recognition system in a clean training condition.

Baseline recognition systems were built based on the clean

speech data provided by the G. 712 filtered and non-filtered

data sets. The number of utterances used for HMM training

was 8623 per data set. In our implementation, we employed

the conventional frontend (FE) feature specified in the ETSI

standard [13] as the basic feature vectors. A 13-dimensional

cepstrum and the corresponding Δ- and ΔΔ-cepstra were ex-

tracted from each frame and used as the feature vector for

speech recognition. The word accuracies of the baseline sys-

tems are shown in Table 1 for the G. 712 filtered and non-

filtered data sets.

We evaluated the performance of the SLDS algorithm [5]

with various artificial reference feature vector streams. For

the non-filtered data set of Aurora-5 DB, 575 utterances were

applied to estimate the SLDS parameters for each separate

test condition while 431 utterances were used in the case of G.

712 filtered data set. The number of LDS’s was set K = 128
and the dimension of the state zt in (1) was fixed at 39 which

was three times of the cepstrum dimension.

For artificial feature generation from HMM, we applied

(10). In the case of feature compensation, we applied the in-

teracting multiple model (IMM) algorithm proposed in [6].

For convenience, we denote the SLDS algorithm with arti-

ficial reference feature vector stream generated from HMM

by HMM, and from IMM by IMM. We combined the feature

vector streams generated through HMM with those obtained

from IMM, which we denote by HMM+IMM. The interpo-

lation weight ρ in (11) was set to 0.5 which showed a good

performance in our experiments. It is noted that HMM, IMM
and HMM+IMM are blind approaches while the conventional

SLDS algorithm (denoted by Stereo-based) is stereo-based

technique. The performance of each algorithm was compared

in terms of relative error rate reduction (RERR).

Tables 2 and 3 show the RERR’s in each separate environ-

mental and SNR condition, respectively. These results clearly

demonstrate that the interpolation between the two sets of fea-

ture vectors, one derived from a feature compensation algo-

rithm and the other from HMM, is very useful in generating

more realistic artificial reference features. One may consider

the results obtained from Stereo-based as a performance up-

per bound for any blind estimation techniques. It is noted that

the performance of HMM+IMM is almost similar to that ob-

tained from stereo-based parameter estimation.

5. CONCLUSIONS

In this paper, we have proposed a novel approach to blind pa-

rameter estimation for speech feature mapping. The proposed

approach first generates an artificial reference feature vector

sequence from the HMM and interpolates it with the output

feature vector stream obtained from a feature compensation

algorithm. This interpolation enables not only to faithfully

reconstruct the clean speech feature but also to increase the

likelihood of the HMM used for speech recognition. Future

study will include an optimal combining technique based on
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Table 1. Word accuracies (%) of the baseline system for non-filtered and G. 712 filtered test data sets

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.32 93.30 83.24 99.31 97.41 92.45 97.70

15 81.66 71.46 55.49 90.44 71.96 61.20 81.64

10 56.44 43.97 30.72 70.27 42.92 36.56 58.61

5 27.67 18.14 12.56 41.48 19.51 18.39 27.09

0 11.14 6.42 5.74 20.80 11.41 8.68 3.63

HFO: hands-free in office, HFL: hands-free in living room, HFC: hands-free in car, HFC-GSM: HFC & GSM

Table 2. RERR’s (%) for different environments.

Stereo-based HMM IMM HMM+IMM
Interior 67.07 45.53 68.81 68.72

HFO 51.52 46.03 45.55 55.76

HFL 36.95 23.17 35.64 45.68

Car 77.35 59.01 74.50 76.58

HFC 75.22 46.71 52.38 69.57

HFC-GSM 72.28 53.95 40.10 64.31

Street 54.71 24.60 41.72 51.47

Table 3. RERR’s (%) for different SNR’s.

Stereo-based HMM IMM HMM+IMM
Clean 50.07 5.94 2.39 44.97

15 dB 73.10 51.16 67.48 74.61

10 dB 74.64 62.43 70.77 76.36

5 dB 64.15 51.69 60.92 64.62

0 dB 42.49 29.11 34.85 40.16

Average 61.55 42.13 50.00 61.06

the Bayesian framework.
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