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ABSTRACT
The subspace Gaussian mixture model (SGMM) has been recently
proposed as an acoustic modeling technique suitable for configuring
multilingual speech recognition systems. It is attractive for this pur-
pose since its parametrization allows its “shared” model parameters
to be trained with data from multiple languages [1]. In this work,
we report on the results of an experimental study carried out with
the goal of improving native Spanish language speech recognition
performance using an existing telephone speech corpus of English
spoken by speakers of Spanish origin. Compensation for sources of
acoustic variability between Spanish and English language data sets
was found to be important in obtaining good multilingual ASR per-
formance. We conclude with a discussion about the notion of acous-
tic similarity between the state dependent parameters of the SGMM,
and its possible use in effectively modelling pronunciation variation.

Index Terms— Multilingual Speech Recognition, Acoustic
Modelling, Subspace methods

1. INTRODUCTION

There has been considerable recent interest in configuring ASR sys-
tems for a target language using speech data acquired from multi-
ple languages [2, 3]. This work has generally been motivated by
scenarios where very limited speech and language resources exist
for the given language [4, 5]. In practice, multilingual acoustic
model training in ASR has the potential to address a range of prob-
lems. For example, in porting a commercial ASR based service to
a new language, it may be advantageous to bootstrap the system us-
ing an initial model that incorporates data collected from other lan-
guages [3, 6]. A more aggressive example is to improve the per-
formance of conversational telephone speech (CTS) ASR system in
a given language by incorporating data from existing multilingual
speech corpora which is not necessarily from the same task domain.
This is the problem which is addressed in this paper.

This problem is particularly interesting if the performance ob-
tained for a particular target language is low due to insufficient lan-
guage specific training data or other issues that might be inherent
to that language. Using existing multilingual data in this manner
is attractive since, if it already exists, incorporating the new data
can have effectively zero cost. Of course, there are many issues that
must be dealt with for this scenario to be practical. These include the
issues of defining common phone sets across languages and the ex-
tent to which similar phonetic contexts across languages can benefit
training for a given language pair [6, 7]. However, just as important,
one must account for systematic acoustic differences that might exist
between data sets associated with different languages.

Many approaches to multilingual acoustic model training in
ASR have focused on sharing data between units by using phoneme
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inventories which are common across languages [6, 7]. Other
approaches have focused on sharing data amongst phones in contin-
uous density hidden Markov models (CDHMMs) which have similar
acoustic contexts [8, 6].The performance of all of these approaches
are limited by the difficulty associated with specifying phonemic
units whose acoustic realizations are consistent across languages.
They are also potentially limited by the difficulties associated with
sharing data across HMM states in CDHMM models.

Recently, the subspace Gaussian mixture model (SGMM) was
shown to be an attractive acoustic modelling technique for modelling
acoustic units for multilingual speech recognition [9]. The effective-
ness of the SGMM for multilingual ASR in [9] was shown by train-
ing the so-called “shared parameters” of the SGMM using combined
multilingual data collected under similar acoustic and channel con-
ditions. It could be a cause for concern if the sources of multilingual
data are from differing acoustic and channel conditions. Here we
describe an experimental study for training an SGMM system in a
multilingual fashion as in [9], but using data collected in two signif-
icantly different acoustic and channel conditions. We show that the
acoustic and channel mismatch between the two sets of data does
negatively affect performance of the multilingual SGMM system.
We then propose a variant of the Speaker Adaptive Training (SAT)
procedure to normalize the data across multiple languages.

The paper is organized as follows. Section 2 briefly describes the
SGMM in the context of multilingual ASR. Section 3 describes the
task domain and the baseline system. Next, in section 4 we describe
our multilingual system, highlighting the effects of the acoustic and
channel mismatch between our data sets. We then describe our pro-
cedure for compensating for the observed mismatch in Section 5 and
present our results. Finally, we provide a discussion on the ability of
the SGMM parametrization to model pronunciation variation effec-
tively.

2. THE SUBSPACE GAUSSIAN MIXTUREMODEL

This section provides a brief description of our implementation of
the subspace Gaussian mixture model (SGMM) recently proposed
by Povey et al. [1]. The description here follows the work of Rose et
al. in[10].

For an LVCSR system configured with J states, the observation
density for a given D dimensional feature vector, x for a state j ∈
1 . . . J can be written as,

p(x|j) =
IX

i=1

wjiN(x|μji,Σi), (1)

where I full-covariance Gaussians are shared between the J states.
The state dependent mean vector, μji, for state j is a projection into
the ith subspace defined by a linear subspace projection matrixMi,

μji = mi + Mivj (2)
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In Eq(2) vj is the state projection vector for state j. The subspace
projection matrix Mi is of dimension D × S where S is the di-
mension of the state projection vector vj for state j. In this work,
S = D. The state specific weights in Eq.(2), are obtained from the
state projection vector vj using a log-linear model,

wji =
expw

T
i vjPI

i
′
=1

expwT

i
′ vj

. (3)

In addition, to add more flexibility to the SGMM parametrization at
the state level, the concept of substates is adopted where the distri-
bution of a state can be represented by more than one vector vjm,
where m is the substate index. This “substate” distribution is again
a mixture of Gaussians. The state distribution is then a mixture of
substate distributions which are defined as follows:

p(x|j) =

MjX

m=1

cjm

IX

i=1

wjmiN(x|μjmi,Σi) (4)

where cjm is the relative weight of substate m in state j and the
means and mixture weights are obtained from substate projection
vectors, vjm

μjmi = mi + Mivjm (5)

wjmi =
expw

T
i vjmPI

i
′
=1

expwT

i
′ vjm

. (6)

It is apparent that this acoustic modelling formalism has a large
number of “shared” parameters and small number of state specific
parameters. For multilingual acoustic modelling the shared parame-
ters, namelyMi,wi andΣi are trained by pooling data from multi-
ple languages. In addition, while maintaining separate phone sets for
each language, the state specific parameters vj are only trained from
data specific to each language. In [9] the speech recognition perfor-
mance was shown to be superior when the “shared” parameters were
trained with data from multiple languages rather than being trained
with data from a single language.

3. TASK DOMAIN AND BASELINE SYSTEMS

The experimental study addressed in this paper deals with a Span-
ish language (CTS) task as characterized by the Call Home Span-
ish speech corpus [11]. Multilingual training is performed using a
separate English language CTS corpus collected from a population
of Hispanic English speakers. This section introduces the task do-
main and describes how the baseline CallHome and Hispanic En-
glish CDHMM and SGMM acoustic models are trained.

3.1. CallHome Spanish and Hispanic English Corpora

The CallHome corpora are known to be a unique challenge for
speech recognition [12]. Apart from the small size of the corpora,
the data consists of speech between familiar parties with inher-
ent dysfluencies. Burget et al. in [9] use the English, German and
Spanish sections of the CallHome speech data for building their mul-
tilingual SGMM system. Amongst these individual mono-lingual
systems, Spanish was reported as the worst performing system.
For this reason we decided to focus our effort on improving the
performance on the extremely challenging Spanish language task.

For our multilingual study, we used Spanish inflected English
telephone speech data from the Hispanic English corpus [13]. This
data has significantly different acoustic and channel conditions in
comparison with data from the CallHome database. This corpus it-
self consists of 20 hours transcribed data of spontaneous telephone

Table 1. Word recognition performance for Spanish. All SGMM
systems here are trained with I = 400 shared Gaussians. In this
table JPI - Joint Posterior Initialization; FSInit - Flat Start Initializa-
tion

System Initialization # substates WER [%]

Baseline CDHMM n/a n/a 68.61
Monolingual SGMM FSInit 1604 67.43
Monolingual SGMM JPI 1604 67.14
Monolingual SGMM JPI 6000 66.62

conversations between non-native speakers of English whose native
language is Spanish. We used only a 6 hour subset of this data, which
we call the “clean” subset which consists of utterances whose tran-
scriptions did not have mispronounced words, flagged background
events, false starts and any words that were labelled as unrecogniz-
able by the transcribers.

3.2. Spanish Language CDHMM and the SGMM Training

The baseline system was based on conventional three state left-to-
right HMM triphone models. Decision tree clustering was used to
obtain a system with 1604 states. We used 16 Gaussians per state.
The features are 13 PLP coefficients, with Δ and ΔΔ and speaker-
wise mean and variance normalization. We used 16.5 hours of con-
versational speech data for training, and our test data consisted 2.0
hours conversational speech data. A trigram LM was used with a
vocabulary of 45k words. This trigram LM was trained on the Span-
ish CallHome transcripts and data obtained by crawling the web for
sentences containing high frequency bigrams and trigrams occurring
in the training text of the Callhome corpus.

Next, we describe SGMM system for the same Spanish Lan-
guage task. The training data for this system is the same as that used
for the baseline CallHome CDHMM system. In addition we used
the same language model for recognition as the baseline CallHome
CDHMM system. As mentioned in section 2, an SGMM system
without any substates is a single substate per state system. The Span-
ish language single substate per state system consists of J = 1604
states, with I = 400 full-covariance Gaussians shared between the
states. This system was initialized with Gaussians obtained from
a Universal Background Model (UBM) obtained from speech-only
segments of all the speakers in the training corpus. The SGMM
training was carried out as mentioned in [10].

The word error rate performance for the systems described in
this section appear in Table 1. The first line indicates the perfor-
mance of the baseline continuous density hidden Markov model
(CDHMM) system, with a word error rate (WER) of 68.61%. While
thus baseline WER is high, it is consistent with performance pre-
viously reported under similar scenarios for this task[9] and [12].
Next we discuss the WER obtained for the mono-lingual Spanish
SGMM system. We experimented with two initialization schemes
for the SGMM: flat start initialization (FSInit in Table 1) and joint
posterior initialization (JPI in Table 1) [10]. The advantage of using
the SGMM acoustic modelling formalism for this task compared
to the CDHMM is apparent from WER performance results in line
2 and line 3 of Table 1. While the joint posterior initialization for
the SGMM resulted in the best performing mono-lingual system,
multilingual models are initialized using a flat start initialization due
to limited computational resources. Also, the concept of substates
was briefly introduced in Section 2. To see the effect that the intro-
duction of substates has on the performance, we refer the reader to
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line 4 of Table 1. We see that introducing substates does decrease
the WER performance even further to 66.62%. It is clear from the
table that the monolingual SGMM system provides a 2% absolute
decrease in WER with respect to the baseline CDHMM system.

3.3. Hispanic English CDHMM System

The training data that we used for this CDHMM system consists of
the“clean” subset of the Hispanic English corpus described in sec-
tion 3.1. We trained this system with similar specifications for the
CDHMM Callhome system mentioned in Section 3.2. We obtained
a system with 773 left-to-right tri-phone states after decision tree
clustering.

4. MULTILINGUAL SGMM SYSTEM

As mentioned in Section 1, we are interested in studying the impact
of configuring a multilingual system with data not necessarily from
the same task domain. Having described the procedure for training a
Spanish language SGMM in the previous section, here we describe
the procedure similar to [9] for training our multilingual SGMM sys-
tem.

SGMM training was carried out in a multilingual fashion, by
using the Callhome and the “clean” Hispanic English data to train
the “shared” parameters, while maintaining distinct phone sets for
the two languages. Maintaining separate phone sets allows for train-
ing the state specific parameter training only with data from each
of the two languages individually. Our multilingual SGMM has a
total of J = 2377 states, with 1604 states coming from Spanish
and 773 coming form the Hispanic English system. The system was
initialized with a UBM with I = 400 Gaussians trained on speech-
only segments of speakers from both corpora. The system was ini-
tialized only with a flat-start. This was because the joint-posterior
initialization procedure for calculating the initial state and mixture
dependent posterior probabilities is rather time consuming with only
a marginal gain in performance as is reported on our mono-lingual
Spanish SGMM results.

We report results for our multilingual system in Table 2 only
with respect to its performance on the CallHome Spanish test set. It
is apparent that there is a slight degradation in the performance of
the system with a WER of 67.94%, when compared with the perfor-
mance of the single substate per state monolingual SGMM system
initialized using the flat start initialization procedure which had a
WER 67.43%. Instead of observing a gain in performance due to the
ability of the SGMM to capture shared acoustic phonetic structures
across languages, we observe the contrary. We believe degradation
is due to a mismatch in the acoustic environment and channel condi-
tions between the two sets of data. The cepstrum mean removal and
variance normalization used in the feature extraction process appears
to be inadequate to deal with this mismatch. If we could remove
inter-speaker variation and variation due to environmental acoustic
mismatch, then we conjecture that the subspace matricesMi would
model phonetic variability more accurately.

5. SPEAKER AND ENVIRONMENTMISMATCH

The multilingual SGMM model described in Section 4 was trained
using data taken from the CallHome and Hispanic English corpora
with no explicit mechanism for accounting for the acoustic mis-
match between the two corpora. As a result, there was no improve-
ment in WER obtained using the multilingual model. This section
presents an acoustic normalization procedure for dealing with this
cross-corpus mismatch. The procedure is applied as part of multilin-
gual SGMM training and corresponds to a straight-forward variant

of speaker adaptive training (SAT) [14] and constrained maximum
likelihood linear regression (CMLLR). The procedure is explained
in two-steps as follows.

Given our training feature sets X = [XCH
r , XHE

r ] and the SI
CDHMM models Λ = [ΛCH , ΛHE] we first estimate speaker de-
pendent CMLLR matrices ACH

r and AHE
r , as is done in standard

SAT. Here we use the index r to denote a speaker in our combined
training data set. In addition we obtain a transformed feature set
X̂ by transforming our original feature set X using the speaker de-
pendent transformations ACH

r and AHE
r . Interpreting the CMLLR

transformation as a feature space transformation [14] we use the
transformed features X̂ in the next step of SAT, to train the speaker-
normalized models Λ̂ = [Λ̂CH , Λ̂HE]. Similarly, we transform our
CallHome test features Y

CH = [Y CH
r ] using speaker dependent

CMLLR transformations to obtain a new set of test features ŶCH .
Since the first step normalizes only inter-speaker variation and

not inter-corpus acoustic mismatch we perform a modified version
of the SAT procedure in a second step. Using the model Λ̂ and
the feature set X̂ we obtain a single CMLLR transformation ma-

trix B. We then use B to obtain an updated set of features ˆ̂
X by

transforming the features X̂ and a new set of test features ˆ̂
Y

CH

is

obtained by transforming Ŷ
CH . We use ˆ̂

X to obtain the updated

model ˆ̂
Λ. We then use these new set of training features ˆ̂

X to train
our new multilingual SGMM system trained in the exact same man-
ner as mentioned in section 4. In addition we report results using the

transformed CallHome test feature set ˆ̂Y
CH

.
Clearly there are many ways of compensating for variability

across speakers and across corpora. The advantage of transform-
ing features from both data sets as described in this section is that it
serves to reduce mismatch across all stages of SGMM training.

Table 2. Word recognition performance for Multilingual SGMM
Systems with I = 400 shared Gaussians. All systems were initial-
ized with a Flat Start. NC indicates that speaker and environment
compensated features were used in multilingual training

System # substates WER [%]

Baseline CDHMM n/a 68.61
CDHMM+SAT n/a 65.71
Multilingual SGMM 2377 67.94
Multilingual-NC SGMM 2377 64.82
Multilingual-NC SGMM 6000 64.7

6. RESULTS AND DISCUSSION

We report the ASR results for this speaker and environmental com-
pensated SGMM model which appears as Multilingual-NC SGMM
in Table 2. We see a significant decrease in the WER (approximately
a 4% absolute with respect to the baseline) after compensating for
both speaker and environment variation. In addition a slight decrease
in WER is seen by increasing the number of substates in the SGMM
model. This result verifies our hypothesis that inter-corpus acoustic
mismatch and inter-speaker variability could significantly affect the
performance of multilingual systems configured with the SGMM.

Summarizing the results in Table 2, firstly we see that with well
known techniques such as Speaker Adaptive Training followed by
CMLLR Adaptation of test utterances gives us approximately a 3%
absolute decrease in WER compared to the baseline system. Sec-
ondly, we see that with multilingual SGMM training without any

4895



a a a a a a a b d e e e e e e h i i i k l l m n n o o o o o p r s s t u w y

a
a
a
a
a
a
a
b
d
e
e
e
e
e
e
h
i
i
i
k
l
l
m
n
n
o
o
o
o
o
p
r
s
s
t
u
w
y

Fig. 1. Dissimilarity matrix between the state projection vectors vj

of the center states of the phones of the mono-lingual CallHome
SGMM system computed as a cosine distance

compensation at all we get an increase in WER compared to the per-
formance of the mono-lingual SGMM system. The WER displayed
in the last row of the table shows that the multilingual SGMMmodel
estimated from noise compensated features represents a 4% absolute
decrease in WERwith respect to the baseline CDHMM and a 1% re-
duction in WER with respect to the SAT adapted model.

The plot in Figure 1 shows an anecdotal investigation of the abil-
ity of the SGMM parametrization to characterize pronunciation vari-
ability at the level of the phone and the SGMM state. More specif-
ically, Figure 1 shows a dissimilarity matrix computed between the
state projection vectors vj of the center states of context-dependent
phones of the Spanish language SGMM system. For the purposes
of viewing, not all of the center context labels are displayed along
the axes of the plot. Dark regions indicate regions of high similarity.
From this block diagonal structure, the high-self similarity within a
group of phones (e.g., context specific phones with center context
“a”) is immediately apparent. It is evident from some of the sig-
nificant off-diagonal distances in the plot that they reflect common
consonant confusable pairs differing only in their place of articula-
tion. It is clear that the state projection vectors have the potential to
provide a good characterization of pronunciation variability. These
state dependent parameters appear to be a compact representation
that characterizes pronunciation variability effectively.

7. CONCLUSIONS

A scenario was presented where the two sets of data used for SGMM
multilingual training are not necessarily from the same task domain.
Instead of observing SGMM’s ability to leverage shared acous-
tic phonetic information across multiple languages for increased
ASR performance, we observe contrary results. A simple variant

of Speaker Adaptive Training was proposed to obtain features for
training and testing that are compensated for speaker and environ-
mental variation. Using these compensated features, a decrease in
the word error rate performance is seen for the multilingual system.
In addition we found that multilingual SGMM training with noise
compensated features proved to give better ASR performance com-
pared to performance with traditional CDHMM Speaker Adaptive
Training. We can conclude from this experimental study that multi-
lingual training of SGMMs can be effective despite the existence of
acoustic mismatch across the multilingual corpora.
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