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ABSTRACT

Setting out from the point of view that automatic speech recog-
nition (ASR) ought to benefit from data in languages other than the
target language, we propose a novel Kullback-Leibler (KL) diver-
gence based method that is able to exploit multilingual information
in the form of universal phoneme posterior probabilities conditioned
on the acoustics. We formulate a means to train a recognizer on
several different languages, and subsequently recognize speech in a
target language for which only a small amount of data is available.
Taking the Greek SpeechDat(II) data as an example, we show that
the proposed formulation is sound, and show that it is able to out-
perform a current state-of-the-art HMM/GMM system. We also use
a hybrid Tandem-like system to further understand the source of the
benefit.

Index Terms— Multilingual speech recognition, neural network
features, fast training, Kullback-Leibler divergence

1. INTRODUCTION

Developing a state of the art speech recognizer from scratch for a
given language is expensive. The main reason for this is the large
amount of data that is needed to train current recognizers [1]. Data
collection involves large amounts of manual work, not only in time
for the speakers to be recorded, but also for transcription of the sub-
sequent recordings. Therefore, the need for training data is one of
the main barriers in porting current systems to many languages. On
the other hand, large databases exist already for many languages.
However, most current recognition techniques require large amounts
of data in the target language (the language that the system is sup-
posed to recognize) and are not able to exploit available multilingual
information.

The goal of this paper is to show how to use multilingual training
data to boost the performance of a speech recognizer for a target lan-
guage with very little available training data. We propose to exploit
multilingual information in the form of universal phoneme posterior
probabilities conditioned on the acoustics to improve monolingual
system performance. More specifically, we propose to use a hidden
Markov model (HMM) that is based on the Kullback-Leibler (KL)
divergence (KL-HMM). We compare the novel KL-HMM system
to a system based on recently proposed multilingual Tandem fea-

This research was supported by the Swiss NSF through the project In-

teractive Cognitive Systems (ICS) under contract number 200021 132619/1

and the National Centre of Competence in Research (NCCR) in Interactive

Multimodal Information Management (IM2) http://wwww.im2.ch

tures [2], to a conventional HMM/GMM system [3] based on PLP
features and some standard adaptation techniques.

To enable evaluation, we use SpeechDat(II) data from five Eu-
ropean languages to train a multilayer perceptron (MLP) to estimate
universal phoneme posterior probabilities. The Greek SpeechDat(II)
database is taken as representative of an unseen language with little
available data. Universal phoneme posterior probabilities are then
estimated with the previously trained multilingual MLP and used by
the Tandem system and the KL-HMM system. Results reveal that
multilingual information is successfully exploited by the proposed
KL-HMM system. Therefore, if only very little Greek training data
is available, the KL-HMM system outperforms these systems.

Work with similar aims already exists: Köhler [4] used maxi-
mum a-posteriori (MAP) adaptation with five minutes of data, but
explored the behavior on a rather small task on the German Voice-
mail database with a vocabulary of 62 words and data from 140
speakers. Schultz and Waibel [5] studied rapid adaptation for con-
tinuous speech recognition. They used maximum likelihood lin-
ear regression (MLLR) in combination with a decision tree spe-
cialization technique to adapt language independent acoustic mod-
els to Portuguese. They report 71% word accuracy with 25 min-
utes of training data (compared to 81% word accuracy when a sys-
tem was trained from scratch with 16.5 hours of data). Le and Be-
sacier [6] used two hours of data to perform fast acoustic model-
ing of Vietnamese speech. They used phone mapping and a MAP
based algorithm to adapt the French seed models. Their Vietnamese
speech dialog system yielded word accuracies of 64%. Zhao and
O’Shaughnessy [7] studied MLLR based cross-language adaptation
from English to Mandarin on broadcast news data and found that it is
better to perform training on native speech data instead of perform-
ing cross-language adaptation if there are more than eight minutes
of data available.

In this paper, we propose a system that is not based on conven-
tional HMM/GMM structures and standard techniques, but on the
recently proposed KL-HMM. We will show that it is better to exploit
multilingual information with the KL-HMM system if there are less
than 75 minutes of data available. Further, we will also show that
five minutes of Greek data are sufficient to achieve a performance of
77% word accuracy on continuous read speech with a vocabulary of
10k words, compared to a conventional HMM/GMM system, trained
on 13.5 hours of data, that yields 85% word accuracy.

The remainder of the paper is organized as follows: Section 2
presents the KL-HMM framework and Section 3 introduces the sys-
tems that are compared. Experimental details and results are given in
Section 4. Section 5 then concludes the paper and presents possible
future research directions.
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2. KULLBACK-LEIBLER BASED HMMS

The notion of KL-HMM was introduced by Aradilla [8]. In this
section, we briefly summarize the basic training and decoding tech-
niques in the context of our experiments.

A KL-HMM is a particular form of HMM where each state
d : d ∈ {1, . . . , D}, where there are D states in the target language,

is parametrized by a multinomial distribution yd =
(
yd
1 , . . . , y

d
K

)T
,

where K is the dimensionality of the features. The transition proba-
bilities are also parameters of the KL-HMM, but, to minimize their
effect on the decoding, we consider them to be fixed. In this paper,
each phoneme of the target language is modeled with three states and
equal transition probabilities, except silence, which has different, but
still fixed, transition probabilities to model longer durations.

The proposed system involves two different phoneme sets:

• A target phoneme set that is used to model the speech during
decoding. We assume that there is only a limited amount of
data available for the target language.

• A universal phoneme set that is used during the feature ex-
traction. The universal phoneme set was built by merging
phonemes that share the same symbol across all training lan-
guages. We use universal phoneme posterior probabilities
conditioned on the acoustics as features. For the feature ex-
traction, a multilingual MLP was trained on large amounts of
data to estimate universal phoneme posterior probabilities.

KL-HMM uses a cost function that is based on the KL diver-
gence. The KL divergence is a measure of difference between prob-
ability distributions. Since universal phoneme posterior probabili-
ties conditioned on the acoustics are used as features, and each state
of the HMM is parametrized by a probability distribution, the KL
divergence is well suited for that setup. We will show later that the
proposed system is particularly useful to perform training with small
amounts of data.

2.1. Training

For the description of the training and the decoding techniques, we
assume to have access to the following:

• A set of T acoustic vector observations X = {x1, . . . , xT },
where

xt =
(
xt,1, xt,2, . . . , xt,F

)T

with F being the dimensionality of the acoustic vector.

• A set of probability vectors P = {P1, . . . , PT }, containing
conditional probability distributions

Pt =
(
P (u1|xt, θ), P (u2|xt, θ), . . . , P (uK |xt, θ)

)T

with uk being universal phonemes and K the number of uni-
versal phonemes. The probability distributions are estimated
with the MLP, whose parameters θ were previously trained
on multilingual data.

• Phonetic transcriptions for all the training data (no align-
ments).

and the following is estimated:

• A set of multinomial distributions Y = {y1, . . . , yD}, where

yd =
(
yd
1 , y

d
2 , . . . , y

d
K

)T

is the multinomial distribution associated with state d.

The multinomial distributions Y can be optimized with the help of
a cost function FQ(P, Y ), that minimizes a KL based measure be-
tween P and Y . Like in our previous studies, we use a symmetric
variant of the KL divergence [9]:

fSKL(Pt, y
d) =

1

2
fKL(Pt, y

d) +
1

2
fKL(y

d, Pt) (1)

(2)

where

fKL(x, y) =
K∑

k=1

x(k) log
x(k)

y(k)
(3)

(4)

Hence the cost function FQ(P, Y ) can be written as:

FQ(P, Y ) = min
Q

T∑

t=1

[
fSKL(Pt, y

qt)− log aqt−1qt

]
(5)

where Q = {q1, . . . , qT } stands for all possible state paths allowed
by the given phonetic transcriptions and qt = d, i.e., qt, the state at
time t, is one of the D possible states. The term aqt−1qt stands for
the probability of going from state qt−1 to qt.

Y can be optimized with the Viterbi EM algorithm using
fSKL(Pt, y

qt) as local distances during alignment and FQ(P, Y )
as cost function for the re-estimation of the multinomial distribu-
tions. More specifically, each Pt is associated with a particular state
d by aligning the feature vectors P = {P1, . . . , PT } with the states
by minimizing FQ(P, Y ) (expectation step). The resulting segmen-
tation is then used to update the multinomial distributions Y (maxi-
mization step).

2.2. Decoding

Given a test sequence of universal phoneme posterior probabilities
of length T ′, and a set of hypotheses M, the recognized hypothesis
m̂ is the one with the lowest score:

m̂ = argmin
m∈M

FQ(m)(P, Y )

and

FQ(m)(P, Y ) = min
Q(m)

T ′∑

t=1

[
fSKL(Pt, y

qt)− log aqt−1qt

]

where Q(m) represents the set of all possible state sequences al-
lowed by hypothesis m.

3. SYSTEM DESCRIPTION

We used two different kinds of features to compare six systems.

3.1. Features

We first introduce the two feature types:

3.1.1. Perceptual Linear Prediction

We extracted 39 Mel-Frequency Perceptual Linear Prediction (MF-
PLP) features (C0 −C12 +Δ+ΔΔ), with the HTS variant1 of the
HTK toolkit.

1http://hts.sp.nitech.ac.jp/
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3.1.2. Universal posteriors

We propose to use the large amounts of collected speech data in
various languages to train a multilingual MLP to estimate univer-
sal phoneme posterior probabilities. A universal phoneme set was
built by merging phonemes that share the same symbol across five
European languages (British English, Italian, Spanish, Swiss French
and Swiss German). The universal phoneme set consists of 116
SAMPA2 phonemes and silence. Then a multilingual MLP was
trained with 63 hours of SpeechDat(II) data, collected in the five
aforementioned languages, as explained by Imseng et al. [10]. The
universal phoneme posterior probability estimates were obtained by
forward passing the Greek MF-PLP features.

3.2. Systems

In total we compare six systems. Three systems based on MF-PLP
features and three systems based on universal posteriors.

3.2.1. Monolingual HMM/GMM system

We first built a conventional HMM/GMM system that only used
the available Greek data. The system based on context dependent
phonemes (triphones) was trained from the MF-PLP features with
the HTS toolkit. The tied triphone models were modeled with 2, 4,
8 and 16 Gaussian mixtures with diagonal covariance. Depending
on the available amount of training data, the optimal choice for the
number of Gaussians may vary. We tuned it on the development set.

3.2.2. Maximum likelihood linear regressions

To evaluate whether the new language could be accommodated by
linear transforms, we first trained a triphone HMM/GMM system on
the multilingual data. Each triphone was modeled with 16 Gaus-
sians. We investigated the standard maximum likelihood linear re-
gression (MLLR) as well as a constrained version of it (CMLLR).
CMLLR has fewer parameters and might therefore be advantageous
if we only have access to a limited amount of data. We used a re-
gression tree that allowed up to 32 regression classes. Since not all
the Greek phonemes were present in the universal phoneme set, we
needed to map the palatal plosives c and é to the velar plosives k and
g respectively.

3.2.3. KL-HMM

The KL-HMM system, described in Section 2, was based on tri-
phones and used universal posterior features. Since it is not evident
how to cluster KL-HMM states with a decision tree, we limited our-
selves to word-internal triphones only (as opposed to cross-word tri-
phones for the HMM/GMM systems). During decoding, we backed
off to the context independent model of the center phoneme if a tri-
phone was not seen during training. The absence of a decision tree
based tying is certainly a weakness of the proposed approach and
will be addressed in future work. Each triphone was modeled with
three states.

3.2.4. Multilingual Tandem system

The multilingual Tandem system used conventional HMM/GMM
structures to model the universal posterior features. Besides the

2http://www.phon.ucl.ac.uk/home/sampa/grk-uni.
htm

choice of the features, the training was same as for the monolin-
gual HMM/GMM system (Section 3.2.1). To model universal pos-
teriors with Gaussians, as usually done, we applied logarithm and
Karhunen-Loève transformation to de-correlate. To compare the im-
pact of the different modeling techniques (HMM/GMM versus KL-
HMM), we did not concatenate PLP features as was done, for exam-
ple, by Imseng et al. [2], where multilingual Tandem features were
used to boost the performance in a mixed language environment.

3.2.5. Linear hidden network based Tandem system

To adapt the universal posteriors to the target language and reduce
their dimensionality, we used a technique similar to the linear hidden
network (LHN) as proposed by Scanzio et al. [11]. More specifically,
we trained a single layer neural network to estimate Greek phoneme
posteriors based on the universal posteriors estimated by the multi-
lingual MLP. We then applied the same post-processing and training
procedure as for the multilingual Tandem system (Section 3.2.4).

4. EXPERIMENTAL SETUP AND RESULTS

A-priori, we would expect the following:

• The conventional HMM/GMM system should perform best if
there is a large amount of training data.

• The KL-HMM system should perform best if there is only
very little training data available (because of the efficient
modeling of the multilingual MLP features).

• The multilingual information should be exploited better if
KL-HMMs are used for the modeling instead of HMM/GMM
structures.

• The MLLR systems and the LHN system should perform bet-
ter than the monolingual HMM/GMM system and the multi-
lingual Tandem system, respectively, for low amounts of data.

The purpose of the experiments, then, is to prove or disprove these
hypotheses.

The Greek SpeechDat(II) database contains a relatively large
amount of data. As we did for the other SpeechDat(II) databases, we
only used corpus S, which contains ten read sentences per speaker.
In total, we used the data of 2000 speakers, split into training (1500
speakers), development (150 speakers) and testing (350 speakers)
sets as described by Imseng et al. [2]. The total amount of training
data consists of 808 minutes of speech (13.5 hours). To simulate
limited resources, we continuously reduced the amount of available
data. To do so, we randomly picked a subset of utterances for both
the training and the development set. The amount of training data
varies from 13.5 hours to 5 minutes. We did not change the test set
and all the systems were evaluated on the same set. The test sen-
tences use 10k different words.

Since we have no access to an appropriate language model, we
simply built two different language models: one with all the sen-
tences from the development set and one with all the sentences from
the test set. These language models have perplexities of 43 and
44 respectively. The development language model was used dur-
ing the parameter tuning (language scaling factor and word inser-
tion penalty) on the development set and the test language model
was used during the evaluation. In this sense, results should be
considered as optimistic. As already explained in Section 3, for
the HMM/GMM based systems (monolingual HMM/GMM, Mul-
tilingual Tandem, LHN), we also tuned the number of mixtures per
Gaussian on the development set.
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Fig. 1. Word accuracies from the six different systems for different
amounts of training data. The x-axis is logarithmic and displays the
amount of data and the y-axis is linear and shows word accuracies.

Figure 1 visualizes the results. It can clearly be seen how all the
systems except the KL-HMM and both MLLR system collapse with
very little data.

As we expected, the conventional HMM/GMM performs best if
there are 808 minutes of data available for training. If there are 308
minutes of data available, the performances of the KL-HMM system
and the monolingual HMM/GMM system are statistically identical.
For the significance test, we used the bootstrap estimation method
[12] and a confidence interval of 95%. With decreasing amounts of
training data (75 minutes and less), the KL-HMM system performs
significantly better than the other systems.

If there are only 5 minutes of training data available, the MLLR
system performance is best, but not significantly different from the
KL-HMM system performance. However, the MLLR transform sat-
urates quickly with a rather low performance suggesting that the lan-
guage difference cannot be explained simply by linear transforms. If
there are 18 minutes of data available, KL-HMM performs signifi-
cantly better than MLLR. In contrast to our assumption that CMLLR
might perform better than MLLR for low amounts of data, it never
performs better than MLLR.

Zhao and O’Shaughnessy [7] found that it is better to perform
training on native speech data instead of performing MLLR based
cross-language adaptation if there are more than eight minutes of
data available. In our study, the monolingual HMM/GMM system
performs better than the MLLR system if there are more than 30
minutes of data. However, Zhao and O’Shaughnessy adapted En-
glish models to Mandarin, whereas we adapted multilingual models
from European languages to Greek. The multilingual Tandem sys-
tem and the LHN system perform similarly, but for small amounts of
data, the LHN system clearly outperforms the multilingual Tandem
system.

The KL-HMM system and the multilingual Tandem system use
basically the same features, but model them differently. It seems
that the Gaussian mixtures of the Tandem system are not able to
exploit the previously learned multilingual information in the form
of posterior probabilities, because the latter is outperformed by the
HMM/GMM system that uses the same modeling technique, but

standard PLP features. The KL-HMM system, however, still per-
forms quite well if only five minutes of Greek data are available
and degrades by less than ten percent absolute compared to the
HMM/GMM state-of-the-art system, trained on 13.5 hours of data.
Altogether, the KL-HMM system performs best (or statistically iden-
tical to the best system) for all investigated amounts of data except
808 minutes. Hence, we accept all four hypotheses.

5. CONCLUSION

We have shown that a KL-HMM system equals or outperforms cur-
rent state-of-the-art speech recognition techniques for an unseen lan-
guage if there is only very little training data available. With only
five minutes of data along with word labels, the KL-HMM system
yields a performance of 77% word accuracy. Hence we can conclude
that the KL-HMM framework is well suited to perform automatic
speech recognition for under-resourced languages.

In future, we will investigate KL-divergence based decision
tree clustering and expect to improve the KL-HMM system perfor-
mance.
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