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ABSTRACT

Prosody is the part of speech where rhythm, stress, and into-

nation are reflected. In language identification tasks, these

characteristics are assumed to be language dependent, and

thus the language can be identified from them. In this pa-

per, an automatic language recognition system that extracts

prosody information from speech and makes decisions about

the language with a generative classifier based on iVectors is

built. The system is tested on the NIST LRE09 dataset. The

results are still not comparable to state-of-the-art acoustic and

phonotactic systems. However, they are promising and the fu-

sion of the new approach with an iVector-based acoustic sys-

tem is found to bring further improvements over the latter.

Index Terms— Language Identification, Prosody, iVec-

tors, Joint Factor Analysis.

1. INTRODUCTION

In recent years, we have seen great improvements in acous-

tic and phonotactic language identification (LID) systems.

Among the most popular modeling techniques used in acous-

tic systems are joint factor analysis (JFA) [2] and iVectors

[1], which are usually applied to model spectral features such

as mel frequency cepstral coefficients (MFCC). In contrast,

phoneme n-gram statistics are modeled in order to recognize

languages in phonotactic approaches [3, 4].

Several approaches have been also investigated to extract

prosodic information from speech and employ it in LID sys-

tems. In [6], the authors extract a set of features based on

the three components of prosody: rhythm, stress, and intona-

tion. However, the extraction procedure is computationally

expensive since an automatic speech recognition (ASR) sys-

tem is required. In [7], pitch contours are approximated using

Legendre polynomials over long temporal intervals, which

seems to be logical and useful for prosody modeling. This

approach has also been recently adopted for speaker identifi-

cation (SID) [8, 9, 10], where pitch contours and also energy

contours are approximated using linear combination of Leg-

endre polynomials over syllable or syllable-like units. The re-

gression coefficients together with durations of corresponding

segments are the features describing the three characteristics

of prosody.

When modeling prosodic features for SID, different tech-

niques have been proposed in the literature [8, 9, 10, 11, 12].

Until recently, one of the most popular approaches was to

use a standard JFA model [8, 10]. Recently, the standard

iVector approach [14], initially proposed to model MFCC

features, was tested on polynomial coefficient prosodic fea-

tures [11], showing remarkable performance on a speaker

verification task, comparable to that obtained using the JFA

approach. Note that these approaches are applicable only

to features that are always defined and are relatively low-

dimensional, like the polynomial coefficient features de-

scribed above. For more complex sets of features, another

subspace modeling technique called the subspace multino-

mial model (SMM) [12] was introduced, which models the

vector of weights from a background Gaussian mixture model

(GMM) that takes into account probabilities of undefined val-

ues. Recently, SMM-based iVectors were also successfully

used as low-dimensional representations of n-gram counts in

a phonotactic LID system [5].

In our work, we adopt the standard iVector paradigm [14]

to model the prosodic polynomial features for LID, and cre-

ate a classification system similar to the one from [1], where

an iVector system is built based on acoustic features, and a

generative Gaussian model for each of the languages with a

shared covariance matrix is used as the classifier. Our systems

are tested on the NIST LRE 2009 dataset [16], on which no

previous results based on prosodic features are available. We

hope that this can be useful as a baseline for future research

on this topic.

The rest of the paper is organized as follows: in Section

2, the prosodic feature extraction process is described; in Sec-

tion 3, the generative Gaussian LID system based on iVectors

is revised; in Section 4, the experimental setup and results are

shown; in Section 5, the conclusions are drawn.

2. PROSODIC FEATURE EXTRACTION

2.1. Pitch and Energy Contour Extraction

Our prosodic features carry information about the evolution

of pitch and energy along time. To extract pitch and energy

contours we use The Snack Sound Toolkit [15]. The pitch and

energy values are converted to log domain, to simulate human
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perception. In the next step, energy is normalized by subtract-

ing its maximum value in the log scale. This makes it more

robust to language-independent phenomena such as channel

variations. The log pitch values are normalized by subtracting

mean and dividing by standard deviation estimated over each

recording. In SID no normalization of pitch is required, since

the absolute value contains information about the speaker. In

LID, we are interested only in the information about the lan-

guage and we believe that pitch normalization reduces the un-

wanted across-speaker variability. We have also experimented

with only mean normalization, which resulted in very similar

performance to mean and variance normalization, and for this

reason, only results for mean and variance normalization will

be shown.

2.2. Segment Definition

After extracting pitch and energy contours for whole speech

recordings, every recording is divided into segments and co-

efficients describing pitch and energy contours are extracted

for each such segment. In [10], different segment definitions

were tested and segmentation based on syllables detected us-

ing an ASR system was found to perform the best. Since the

language is unknown in the case of LID, we wanted to avoid

the use of ASR. Therefore, we experimented with the other

two segment definitions proposed in [10]: segment bound-

aries defined by energy valleys and fixed-length segments.

For the energy valley based segments, segment boundaries are

determined by local minima in the energy contour. This ap-

proach tries to find syllable boundaries in a very simple way.

In the case of fixed-length segments, the signal is split into

segments of 200 ms with an overlap of 150 ms. Compared

to the segment length of 300 ms proposed in [10], our seg-

ments are closer to the average syllable duration of 120 ms.

Also, shorter segments and larger overlap allow us to obtain

more training examples for languages with small amounts of

training data.

2.3. Contour Modeling

For each segment, we drop all unvoiced frames for which no

pitch was detected. Then pitch and energy contours are ap-

proximated by linear combination of Legendre polynomials

as

f(t) =

M∑

i=0

aiPi(t) (1)

where f(t) is the contour being modeled and Pi(t) is the i
Legendre polynomial. Each coefficient ai represents a char-

acteristic of the contour shape: a0 corresponds to the mean,

a1 to the slope, a2 to the curvature, and higher order repre-

sents more precise detail of the contour. In our implementa-

tion, Legendre polynomials of order 5 give six coefficients for

pitch and six for energy.

Finally, 13-dimensional feature vectors are obtained by

augmenting the coefficients with the number of voiced frames

in the segment. Thus, we can consider that our features con-

tain information of the three components of prosody: intona-

tion in the pitch, rhythm in the duration, and stress in both

the energy and in the duration. These are the features used

to build our GMM universal background model (UBM). Su-

pervectors of Baum-Welch statistics can then be estimated for

each utterance, as in [14]. They are of dimension 13 times the

number of Gaussians in the UBM.

3. IVECTORS AND CLASSIFICATION

3.1. iVector Extraction

The idea behind the iVector approach is that the language-

and channel-dependent supervectors of concatenated GMM

means can be modeled as

M = m+Tw, (2)

where m is a language- and channel-independent supervector

of concatenated UBM means, T is a matrix of bases span-

ning the subspace covering the important variability (both

language- and session-specific) in the supervector space, and

w is a standard normally distributed latent variable. For each

observation sequence representing an utterance, our iVector is

the maximum a posteriori (MAP) point estimate of the latent

variable w. For more detail on iVector extraction see [14].

3.2. Classifier

Once the iVectors for our training data are obtained, a linear

generative classifier is trained as proposed in [1]. The distri-

butions of iVectors for individual languages are modeled by

Gaussian distributions with a single within-class (WC) full

covariance matrix shared by all the languages.

For an iVector w corresponding to a test utterance, the

loglikelihood for each language is

ln p(w|l) = −1

2
wTΣ−1w+wTΣ−1μl−

1

2
μT

l Σ
−1μl+const,

where μl is the mean vector for language l, Σ is the common

covariance matrix, and const is a language- and iVector-

independent constant irrelevant for making decisions. The

quadratic term wTΣ−1w, which is constant over classes,

would be also irrelevant, if the log-likelihoods were directly

used to obtain posterior probabilities of classes. However,

since the likelihoods are used only as input features to the

calibration backend, it makes a difference in our system, as

explained in [1].

3.3. Fusion and Calibration Backend

For calibration, a Gaussian backend followed by discrimi-

native multiclass logistic regression is used to postprocess
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scores obtained from the described classifiers. Note that the

Gaussian backend is essentially the same model as our gen-

erative classifier. However, its inputs are the scores from the

classifiers described above rather than the iVectors. Also, it

is trained on the separate development dataset to obtain well-

calibrated scores. When fusing multiple systems, a separate

Gaussian backend is trained for each subsystem and outputs

of the Gaussian backends are fused by multiclass logistic re-

gression. A detailed description of the backend, which also

uses information about the recording duration for calibration,

can be found in [13].

4. EXPERIMENTS AND RESULTS

4.1. Test Data

Our results are reported for a closed-set task of 3, 10 and 30

seconds of the NIST LRE 2009 evaluation [16]. The data

comprises 31178 recordings of 23 target languages. Results

are reported in Cavg , which is an error metric defined in [16].

4.2. Training and Development Data

Our training data is from the following databases: CALL-

FRIEND, NIST LRE03, NIST LRE05, NIST LRE07, and

VOA3. The data comprises 51 languages, which are all used

to train our UBM. For training iVector extractor matrices T,

we use data of only the 23 target languages. For training the

generative classifier, we use only 500 files per language, in

the same way as in [1].

A separate dataset was used for training the fusion/calibration

backend, which includes data from the following databases:

CALLFRIEND, CALLHOME, Fisher, NIST LRE05, NIST

LRE07, Mixer, OGI22, and VOA.

4.3. Results with Prosodic Features

Several parameters can be tuned in the system. We have stud-

ied the influence of the number of Gaussians, the iVector di-

mensionality, and the type of segment definition as described

in Section 2.2.

Table 1 compares performance of prosodic features with

1) energy valley based segments and 2) fixed-length seg-

ments. UBM with 512 Gaussian components is used in

extraction of 300-dimension iVectors. As can be seen,

fixed-length segments provide better performance, which

is in agreement with the previous experiments on the SID

task [10]. Prosodic features with fixed-length segments are

used in all the following experiments.

Next, we experimented with the number of Gaussian com-

ponents in iVector extraction and with iVector dimensional-

ity. Recent experiments in SID [11] show that a reasonable

configuration for prosodic systems is 512 Gaussian compo-

nents and 300-dimension iVectors. Table 2 compares perfor-

mance of systems with different numbers of Gaussian compo-

nents. Improvement can be seen when increasing the number

of components from 512 to 2048. As for acoustic features [1],

increasing the dimensionality of iVectors improves the system

accuracy. 400-dimension iVectors were found to be optimal

and no additional gains were observed for higher dimensions.

Condition Energy valley Fixed length

3 s 35.08 34.57

10 s 25.83 24.45

30 s 19.27 17.28

Table 1. Cavg × 100 on NIST LRE 2009 for the prosodic
features with energy valley based segments and fixed-length
segments, 512 Gaussian components, 300-dimension iVectors

Condition 512 Gaussians 1024 Gaussians 2048 Gaussians

3 s 32.56 31.97 31.76

10 s 22.52 21.89 21.12

30 s 15.58 14.60 13.78

Table 2. Cavg × 100 on NIST LRE 2009 for the prosodic fea-
tures with fixed-length segments, 512, 1024 and 2048 Gaus-
sian components, 400-dimension iVectors

4.4. Fusion with Acoustic iVectors-based System

4.4.1. Acoustic system

The state-of-the-art-acoustic system is built in the same fash-

ion as in [1]. It uses the same configuration (SDC 7-1-3-7,

2048 Gaussians, 600-dimension iVectors) except for not us-

ing vocal tract length normalization (VTLN) and having a dif-

ferent training dataset. The UBM, iVector extractor, Gaussian

classifier, and backend are trained in the same way and on the

same data as described for the prosodic system in Section 4.1.

Therefore, the improvements obtained from fusing the acous-

tic and prosodic system can be attributed to the complemen-

tarity of prosodic and cepstral features and not to combining

information from different data sources.

4.4.2. Fusion results

Table 3 shows the results for the state-of-the-art acoustic

system, our best prosodic system (2048 Gaussians, 400-

dimension iVectors) and the fusion of both systems. As can

be seen, the fusion with the prosodic system improves perfor-

mance in all conditions. The relative improvements obtained

over the acoustic system are: 10.93% for 3 seconds; 15.24%

for 10 seconds; and 9.39% for 30 seconds.

5. CONCLUSIONS

A LID system based on prosodic features has been intro-

duced. Extraction of the pitch, energy, and duration allows

us to represent the three components of prosody: stress,
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Condition Acoustic Prosodic Fusion

3 s 19.13 31.76 17.04

10 s 6.30 21.12 5.34

30 s 3.09 13.78 2.80

Table 3. Cavg×100 for the generative iVectors-based acous-
tic system, generative iVectors-based prosodic system and fu-
sion of both systems

intonation, and rhythm. Unvoiced frames where the pitch

is undefined are discarded, permitting us to treat the fea-

tures as continuous. Thus, the same classifier successfully

applied for acoustic LID, based on iVectors and a generative

model, can be adapted for our prosodic features. Fixed-length

segments, 2048 Gaussians, and 400 dimensions, have been

found to be a good configuration for the system. Although

the performance of the prosodic system alone does not give

outstanding results, it is in the fusion with another LID sys-

tem where this approach is really powerful. The combination

with a prosodic system resulted in significant performance

improvements over the state-of-the-art iVectors-based acous-

tic system on all conditions of the NIST LRE 2009 task. We

consider this technique to be very promising as there are still

many possibilities for experimenting with additional prosodic

features such as AM modulation or formants that could pro-

vide further improvements. For this reason, we believe that

prosodic features can play an important role in future LID

systems. At the same time, a baseline for prosodic systems

on the NIST LRE 2009 dataset has been established in this

work.
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prosodic syllable contour features for speaker recognition”,

Proc. ICASSP 2010, Dallas.

[11] M. Kockmann, L. Ferrer, L. Burget, and J. H. Cernock, ”iVec-

tor fusion of prosodic and cepstral features for speaker verifi-

cation”, Proc. Interspeech 2011, Florence.

[12] M. Kockmann, L. Burget, O. Glembek, L. Ferrer, J. Černocký,
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