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ABSTRACT

In this paper we describe our work in constructing a language iden-
tification system for use in our simultaneous lecture translation sys-
tem. We first built PPR and PPRLM baseline systems that produce
score-fusing language cue feature vectors for language discrimina-
tion and utilize an SVM back-end classifier for the actual language
identification. On our bi-lingual lecture tasks the PPRLM system
clearly outperforms the PPR system in various segment length con-
ditions, however at the cost of slower run-time. By using lexical in-
formation in the form of keyword spotting, and additional language
models we show ways to improve the performance of both baseline
systems. In order to combine the faster run-time of the PPR system
with the better performance of the PPRLM system we finally built a
hybrid of both approaches that clearly outperforms the PPR system
while not adding any additional computing time. This hybrid system
is therefore our choice for the use in the lecture translation system
due to its faster run-time and good performance.

Index Terms— language identification, support vector ma-
chines, speech translation, lecture translation

1. INTRODUCTION

Automatic language identification (LID) is the task of automatically
identifying the language used by an unknown speaker for voicing
an utterance [1]. Among all established LID approaches, phone—or
more precisely phonotactics—based techniques are the most popu-
lar ones, being able to do robust identification on sufficiently short
input sequences even for real-time demands [1, 2]. Phonotactic ap-
proaches utilize phone decoders and operate on the streams of sym-
bol sequences produced by them. Usually, a language decoder scores
these sequences, given a set of potential target languages. Based on
these scores, a back-end classifier then performs the actual language
classification.

In this paper we describe our work in implementing an LID sys-
tem for use in our simultaneous lecture translation system [3]. By
augmenting the translation system with an LID system we plan to
ease its use by eliminating the need for manually selecting the input
language, and potentially being able to detect longer lasting switches
in the the speakers’ language during a lecture.

We first implement two baseline LID systems—a parallel phone
recognition (PPR) system and a PPR followed by language mod-
eling (PPRLM) system[4]—and evaluate their performance on the
lecture translation task, consisting of a bilingual classification task
between English and German lecture snippets, in 5 different snippet
length conditions: 30s, 20s, 10s, 5s and 3s. Both systems make use

of an SVM classifier back-end. We further show improvements by
modifications to these two baseline systems which consist of the use
of a rudimentary key-word spotting technique for the PPR system,
and the use of additional, slightly varied language models for the
PPRLM system.

With respect to the requirements for use in our lecture translation
system we then propose a hybrid system of both approaches that
combines the faster run-time of the PPR approach with the higher
classification accuracy of the PPRLM approach.

2. RELATED WORK

Similar to [5] we also decided to use an SVM back-end classifier for
a PPRLM system, conducting a fusion of all language model scores,
which results in a error reduction of 29%, compared to a baseline
system without back-end classifiers. Similar to [6], which unlike us
used a GMM back-end classifier, we also make use of “score vec-
tors” in a bi-lingual PPRLM framework, comprising several features
for language classification. Additional to PPRLM language model
scores, a “differential acoustic score” calculated from the phone rec-
ognizer generated scores was used in [6] and gives a 2% error reduc-
tion. Unlike in other work, e.g. [7], we do not use phone tokenizers
that share a common set of acoustic models. The choice of an SVM
back-end classifier is also motivated by experiments from [8] that
demonstrated the higher performance of an SVM over a GMM and
an ANN back-end classifier. Similar to [9], for each language we
take into account the N most frequent words for modeling additional
linguistic information.

3. PHONE RECOGNIZERS

The phone recognizers for our LID systems were realized with the
help of the Janus Recognition Toolkit (JRTK) which features the
IBIS single pass decoder [10]. We used the acoustic models of the
German and English LVCSR systems that we had trained for the
2010 Quaero Speech-to-Text Evaluation [11]. We re-trained them
without vocal tract length normalization and left out the discrimi-
native training step. In the acoustic model phonemes are modelled
by context-dependent three-state left-to-right HMMs without skip
state, that have been clustered into generalized quinphones with the
help of a CART decision tree. The German phone set consists of 45
phonemes, the English of 52 phonemes, including noise and silence
phonemes. Each model uses Gaussian Mixture Models with diag-
onal covariance matrices and up to 128 components for calculating
the emission probability with 16.000 distributions over 6.000 code-
books. The model was trained on broadcast news data, European
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Parliament sessions and manually transcribed podcasts and similar
sources collected from the World Wide Web—275h of training data
for the German model and 309h for the English model.

In order to obtain phoneme recognizers from the LVCSR sys-
tems we replaced word based dictionary of each decoder by a dictio-
nary comprising the respective phone set.

4. BASELINE SYSTEMS

4.1. Parallel Phone Recognition (PPR)

In the PPR approach, phonotactic knowledge is incorporated directly
into the decoding process of a test utterance by means of a language
model. Phonotactic, as well as acoustic-phonetic knowledge like-
wise contribute to each final recognition score. Phonotactic infor-
mation is modelled by phone-based n-gram language models. In
order to generate the training corpora for these n-gram models we
converted the German and English acoustic model training corpus
into phoneme sequences with the help of the forced alignments used
for acoustic model training.

We then used the SRILM toolkit [12] to estimate phonetic tri-
gram language models. As experiments in [13] showed that Witten-
Bell discounting works best given an LID system utilizing phonotac-
tic constraints in a PPRLM architecture, we also used it for estimat-
ing our language models. The phoneme recognizers obtained in this
way achieved phoneme accuracies of 57% for German, and 53% for
English.

The actual language classification is then performed by an SVM
classifier back-end, that we trained with the LIBSVM toolkit [14].
The SVM operates on language cue feature vectors. A feature vec-
tor vi = {scoreiDE , score

i
EN} for a test message i contains the

scores of each phone recognizer. We decided to use the C-Support
Vector Classification (C-SVC) formulation, as it is the original SVM
fomulation [15], and fits our requirements. According to test runs
on a small set of randomly selected data, the linear kernel type func-
tion K(xi,xj) = xT

i xj seemed to work best for us. During the
classifier training, the linear penalty parameter C is determined au-
tomatically via a grid-search.

A full test run is performed by Viterbi decoding a test utter-
ance by each phone recognizer, with the influence of the respective
n-gram language model. Each decoder generates a log-likelihood
recognition score. The scores are normalized by the utterance frame
count and combined to a feature vector for SVM classification.

4.2. Parallel Phone Recognition followed by Language Model-
ing (PPRLM)

The PPRLM system’s phone recognizers are in principal the same
as for the PPR approach. The difference is, that the decoders no
longer incorporate language models during the decoding process,
rendering the decoding a mere tokenization. Instead, phonotactics
are now modelled by language model back-ends. For each phone
recognizer for the different target language, back-end language mod-
els for all target languages are trained. For our bi-lingual classifica-
tion scenario, this results in two times two phone set dependent and
language-specific phone-based n-gram language models (an English
and a German language model in the phoneme set of the German
phone recognizer, and both language models also in the phoneme set
of the English phone recognizer).

In order to generate the training corpus for the English language
model in the German phoneme set, and the corpus for the German

language model in the English phoneme set, we tokenized the En-
glish acoustic model training data with the German phoneme rec-
ognizer, and the English training data with the German phoneme
recognizer.

The SVM back-end classifier is trained exactly the same way
as for the PPR framework. Each training message is decoded by
the bank of phone tokenizers, resulting in two separate phone set
dependent streams. Both streams are analyzed by the respective n-
gram models: Let T = {DE,EN} be the set of target languages,
Wr = {wr

1, w
r
2, . . . , w

r
m} with r ∈ T be the phone sequence pro-

duced by the decoder front-end using the phone set of language r,
and be l ∈ T , then

L(M |l) = 1

f
·
∑

r∈T

m∑

i=2

logP (wi|wi−1, λ
r
l ) (1)

is the joint language score for a given test message M , where
f = |T | is the amount of phone tokenizers. This score is calculated
with the help of the language models described above. Both scores
of a particular target language l are averaged in the log domain, as
both decoders are seen as working independently of each other.

Further, the joint language score is normalized in length by the
number of frames in the message. The scores are stacked into a fea-
ture vector for SVM classification. A language cue feature vector
vi = {L(M |DE)i,L(M |EN)i} for every test message i is com-
prised by the joint language scores for each target language.

5. EXPERIMENTAL RESULTS

5.1. Test Data Base

Our test database consists of recorded lectures which have been man-
ually transcribed. The German audio material mainly consists of
lectures, that where given at the Karlsruhe Institute of Technology
(KIT) and the Carnegie Mellon University (CMU), but also record-
ings of the state parliament of Baden-Württemberg, and speeches
and various talks of ceremonial acts at KIT. The English data is
comprised of lectures of the same type as for the German set and of
TED Talks downloaded from the TED website1. The total amount
of recorded data is 51 hours for German and 12 hours for English.

All recordings are available in 16 kHz and 16 bit quality, most
of them were done with close-talk microphones. We generated five
sets of audio segments with 30s, 20s, 10s, 5s and 3s average dura-
tion. The segments that we selected for these five sets had to meet
the following constraints: Max. 20% of silence within the segment
and max. 20% of foreign words per segment, according to the tran-
scription data, and max. 20% variance in segment length, given the
average.

The test data is split into a development set for training the SVM
back-end classifiers and evaluation sets for every test condition, in a
way that all sets are recording disjunct, and mostly speaker disjunct.
However, one speaker had to appear in both the German and English
sets, as well as both the development and evaluation set, since it
provided a vast amount of the lecture data in the sets. Data of this
speaker covers approximately 50% of the development set and, on
average, 37% of each test set. However, the recording disjointedness
is still maintained.

1http://www.ted.com
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Training Set Test Sets
30s 30s 20s 10s 5s 3s

1856 1715 2436 3959 5224 5207 DE
523 387 532 917 1325 1453 EN

Table 1. Fragmentation of the database.

5.2. Baseline Results

Table 2 shows the results for the baseline PPR and PPRLM systems.
The PPRLM system outperforms PPR, regardless of the segment
length category. However, with decreasing test messages length, the
loss in performance for PPR system is relatively smaller than for the
PPRLM system. This might be due to the fact that phone recognizer
scores are be more robust to segment length, compared to the phono-
tactic scores delivered by language model back-ends, which need a
sufficient amount of statistically relevant data for proper probability
estimation.

System 30s 20s 10s 5s 3s

PPR baseline 91.1 90.9 89.4 87.7 86.5

+ Keyword spotting 96.9 96.6 93.8 90.5 87.0

PPRLM baseline 99.7 99.7 98.8 96.0 92.0

+ cleaned LMs 99.8 99.8 99.0 96.3 92.4

PPRLM & PPR hybrid 97.7 97.7 96.4 93.2 91.2

Table 2. Identification accuracy (in %) of the tested systems.

5.3. Keyword Spotting for PPR

In a next step we improved the PPR baseline system by incorporat-
ing rudimentary language-specific lexical knowledge. The assump-
tion is, that a test message Wl in language l would generate more
phoneme sequences resembling common words of language l, than
a test message in a language l′ �= l. We generated a list of the 100
most common words per language, using existent word frequency
lists, which are computed upon corpora of transcribed TV and movie
recordings [16]. The corpora comprise 25 mio words for German
and 29 mio words for English. Pronounciations and pronounciation
alternatives were extracted from large dictionary files which have
also been used for the 2010 Quaero evaluation system [11]. The lists
were cleaned manually, e.g. by deleting entries consisting of single
phones only.

We tested on two variants of applying these lists. The first is
the use of generic n-gram language models, computed upon the
word lists, where the keywords have a very high count (same for
all words), and the uni-grams slip in with counts of 1. The models
were applied as back-ends for the phone recognizers, which resulted
in a performance gain for all but the shortest test segment cate-
gory. A more straight-forward approach yielded more promising
results: A phone sequence parser checks a recognizer hypothesis
for sequences listed in the keyword pronounciation dictionary. The
dictionary search runs sorted by phone sequence length, i.e. a phone
already associated to a keyword cannot be associated again to a sec-
ond keyword. Phones assumed to belong to a keyword are marked
as such. Best language discrimination results were obtained by
computing a keyword-phones to hypothesis length ratio. The iden-
tification accuracy significantly increased for longer test messages,
whereas the performance of the short-time tests remained almost the
same. The combination of both, the generic language model back-
ends and the latter expansion, yielded an overall best performance.

Fig. 1. Schematic of the improved PPR system.

Fig. 2. Schematic of the improved PPRLM system.

5.4. Supplementary Language Models for PPRLM

During system implementation, we experimented with several vari-
ations of back-end language models. One attempt was to clean the
corpora of all non-phone tokens, such as noise tokens, silence and
filler tags, before language model generation. This variant led to
comparable results compared to the initial system. This is not sur-
prising, as the phone streams are cleaned of non-phone tokens, be-
fore they are processed by the back-end language models. How-
ever, using both sets of language models, resulting in two separate
language scores, slightly improved the identification accuracy. The
modified PPRLM framework achieves the best overall performance
of our tested LID architectures. It yields an identification accuracy
of 99.8% on 30s average test messages, and 92.4% on the average 3s
category.

Fig. 3. Schematic of the proposed hybrid system.

5.5. PPRLM & PPR Hybrid

In order to combine the fast run-time of the PPR system, which is
due to the use of a language model during the phone recognition,
with the better classification accuracy of the PPRLM system, we
constructed a hybrid system of both approaches. For that we used
the phone recognizers of the PPR framework, followed by the un-
modified PPRLM language model back-ends: Each phone recog-
nizer generates a best hypothesis by means of acoustic and phono-
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Fig. 4. System performances dependent on the test duration.

tactic scores. The phone streams are scored by the respective phone-
dependent language models. A language cue feature vector for SVM
processing contains both, the averaged language-specific scores and
the phone recognizer scores.

Compared to the baseline PPR system, a significant perfor-
mance boost is observable for all test conditions. However, the final
PPRLM system remains unmatched. Considering the performance
in terms of run-time, the hybrid system beats our best PPRLM
framework, given the fact, that the phone recognition, which is
faster in the PPR framework, consumes most of the computation
time, whereas the language score computation, as well as the SVM
classification run much faster. Real time factor analyses revealed,
that the phone recognizers of the PPRLM system, which do not
use language models during decoding, need about 20%-40% more
computation time than the recognizers from the PPR framework.

So, with the hybrid system, it is now possible to have an LID sys-
tem that runs as fast as a PPR system, but gives significantly better
performance, as the PPRLM-like language model back-ends seem to
compensate for the weaknesses of the pure PPR approach on short-
duration testing. Hence, our proposed PPRLM & PPR hybrid out-
performs the enhanced PPR system with a relative increase of 5% in
accuracy on the 3s test condition.

6. CONCLUSION

In this paper we have described our LID systems for use in our simul-
taneous lecture translation system. We have started with two base-
line systems—a PPR and a PPRLM system—of which the PPRLM
system performed better on our lecture, bi-lingual test set. We were
able to significantly boost the performance of the PPR system by ap-
plying keyword spotting techniques, while still not matching the per-
formance of the PPRLM system, however. We were able to slightly
improve the PPRLM performance by doubling the amount of back-
end language models, using cleaned data for training a second model
set. In order to combine the faster run-time of the PPR system, which
is 30% faster than the PPRLM system, with the better performance
of the PPRLM system, we designed a hybrid of both approaches.
The hybrid system significantly outperforms the PPR approach, even
on the shortest segments in our test, without adding additional run-
time on top of it, thus making it a good candidate for use in our si-
multaneous lecture translation systems as it combines fast run-time
with good performance.
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