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ABSTRACT

In this paper, we propose a discriminative method for the acoustic

feature based language recognizer, which is a modification of the

polynomial expansion in generalized linear discriminant sequence

(GLDS) kernel. It is inspired by the Gaussian mixture model-support

vector machine (GMM-SVM) system which has been successfully

used in both speaker and language recognition. Because of the re-

striction of calculations in our method, it is nearly impossible to

stack component dependent polynomial expansion vectors as GMM-

SVM system does. Thus we introduce a set of language dependent

weights to fuse these expansion vectors and utilize maximum mutual

information(MMI) criterion and logistic regression to estimate the

model parameters. Finally, we evaluate our method on the close-set,

30 seconds test condition of NIST LRE 2007 and up to 30% rela-

tive improvement can be achieved comparing to the baseline GLDS

system.

Index Terms— Language recognition, weighted GLDS, GMM,

maximum mutual information, multi-class logistic regression

1. INTRODUCTION

Language recognition from speech involves the algorithms and tech-

niques that model and classify the language being spoken. Current

state-of-the-art language recognition systems can be divided into two

categories: spectral based (acoustic) and token based (phonotactic)

[1]. Token based language recognizers segment the speech signals

into logic units based on phoneme recognizer which is followed by

language model or classifier such as SVM.

Unlike the token based systems, acoustic language recognizers

extract cepstral features in fixed frame length, e.g. MFCC, PLP, and

directly model these features for different languages. Two kinds of

modeling techniques commonly used in language recognition are the

generative model-GMM and the discriminative model-SVM. In [2]

[3], the authors proposed GLDS kernel for SVM based speaker and

language recognition system. The GLDS kernel is simply an inner

product between two averaged high dimensional polynomial expan-

sion vectors. Probably due to the GLDS kernel which reduces the

computational load and preserves model complexity advantage, our

experiments show that it performs worse than GMM-SVM system

[4] in both speaker and language recognition. While GLDS ker-

nel treats each frame of an utterance equally without discrimination,

GMM-SVM maps different acoustic features to different Gaussian

components so as to highlight the importance of different features.
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Empirical evidence shows that some phonemes are more useful

for us to distinguish specific language than the others. GMM-SVM

system tends to strengthen those useful frames and weaken the use-

less ones through the component alignment. This behavior is con-

sistent with that of human beings and however GLDS system seems

not to be the case.

The contribution of this work is that we change the mean of

polynomial expansion vectors in the original GLDS system to the

weighted mean. Additionally, we propose two techniques to discrim-

inatively train the weights. The first one assumes that the weighted

polynomial vectors are normally distributed with different means

and covariances conditioned on different languages. We use MMI

criterion to maximize the posteriori of correctly classifying the train-

ing segments with respect to the weights and then train classifier for

each language with SVM. In the second approach, a linear classifier

is selected to optimize the weights and classification hyperplanes si-

multaneously via multi-class logistic regression.

The paper is organized as follows. Section 2 gives a brief in-

troduction to the polynomial expansion and GMM super-vector. In

section 3, we first introduce the form of weighted expansion vectors

and then propose two discriminative training methods successively.

We present our experiments configuration and results in section 4, 5

respectively. Finally, section 6 draws some conclusions.

2. THEORETICAL BACKGROUND

2.1. Polynomial expansion in GLDS

Given a sequence of F -dimensional acoustic feature vectors of an

utterance, S = (x1, ...,xT ), the GLDS kernel first maps the vari-

able length of sequence to a fixed length of polynomial expansion

vector, bs. That is,

S → bs =
1

T

T∑
t=1

b(xt) (1)

where b(x) is the polynomial expansion vector of all monomials of

the input feature x up to and including degree K(K = 3 in our

experiment ). The dimension of b(x), denoted as E(which means

Expansion), is the same as binomial coefficient
(
F+K
K

)
,

E =

(
F +K

K

)
=

(F +K)!

F !K!
(2)

GLDS kernel function between two sequences, S1 and S2, is defined

as

KGLDS(S1,S2) = b
′
s1R

−1bs2 (3)
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where R is a correlation matrix derived from a large data set includ-

ing multiple languages and is usually diagonal. The function of R−1

is variance normalization for the polynomial vectors.

Note that the input of SVM, bs, is the mean of each polynomial

vectors b(xt). We will introduce the weighted mean of b(xt) in

section 3.

2.2. GMM super-vector

Given a well trained GMM universal background model(UBM)

which consists of C mixtures, the zero and first order sufficient

statistics are defined as,

n(c) =
∑
t

γt(c) (4)

f(c) =
∑
t

γt(c)xt (5)

where γt(c) is the posterior probability of the event that the feature

vector xt is emitted by component c, c ∈ [1, C]. The utterance de-

pendent GMM is updated using (4) and (5) by relevance maximum a

posteriori (MAP) adaptation [5] only for the means of each compo-

nent. In GMM-SVM system [4], the key step is a mapping between

sequence S and the super-vector which is a CF -dimensional vector

formed by concatenating the means of each component. The super-

vector is further taken as feature input to SVM.

3. DISCRIMINATIVE TRAINING

Comparing GLDS system and GMM-SVM system, we can find that

in GLDS system each frame of utterance S has the same contribution

to the final vector (1). However, the GMM-SVM system assigns dif-

ferent weights to each frame according to their position in the UBM

space, which seems more reasonable because language specific in-

formation usually contained in separate components.

3.1. Weighted polynomial expansion

Inspired by the GMM-SVM system, we consider weighting the in-

dividual expansion vector, b(x), according to component alignment

of x. Mathematically, we define component dependent expansion

vectors gs(c) for sequence S,

gs(c) =

√
C

T

T∑
t=1

γt(c)b(xt) (6)

where the normalization coefficient
√

C
T

is used to guarantee the con-

sistency with original GLDS.

An intuitive thought is to concatenate gs(c) of each component

to form a single super-expansion vector just as the role of super-

vector in GMM-SVM system. Unfortunately, this is computationally

intractable because of the large scale classification problem. In our

experiment, the number of training utterance is order of 104 and

concatenating gs(c) yields approximately 107 dimensional feature

as input to classifiers. And therefore, we use a linear combination

of gs(c), c ∈ [1, C] which produces a vector of the same size as

original GLDS system.

As mentioned before, the weights should be language dependent

to distinguish the importance of different components for different

languages. We define the C-dimensional weight αl for language

l ∈ [1, L], where L is the language number to be recognized. Given

segment S, let Gs be a E×C matrix whose columns are gs(c), c ∈
[1, C] and gs be the weighted polynomial expansion vector,

gs = Gsαl(s) (7)

where Gs = [gs(1), gs(2), ..., gs(C)] and l(s) denotes the lan-

guage label of segment s.

Note that if ∀l ∈ [1, L],αl = ( 1√
C
, 1√

C
, ..., 1√

C
)′, then gs =

bs where bs is defined in (1). As a result, GLDS system is a special

case of our weighted approach when αl, l ∈ [1, L] assign flat prior

to each component.

The remaining problem is to estimate the language dependent

parameters. We consider two discriminative training techniques,

namely MMI and logistic regression.

3.2. MMI optimization followed by SVM

As an improvement of the GMM based language recognition system,

the authors [6] retrained the language dependent GMMs using max-

imum mutual information estimation. Unlike the conventional max-

imum likelihood(ML) training which aims to maximize the overall

likelihood of the training data, MMI objective is to maximize the

posterior probability of correctly recognizing all training segments.

We follow the MMI criterion to train the language dependent

weights αl, l ∈ [1, L]. The purpose of this step is to improve the

discrimination between classes which will be visualized in section

5.1. Specifically, instead of the GMM hypothesis of each language in

[6], we assume the class conditional probability density of language

l is multivariate normal with mean μl and diagonal covariance Σl in

the expansion vector space.

log p(Gs|l) =− E

2
log(2π)− 1

2
log |Σl|

− 1

2
(Gsαl − μl)

′ Σ−1
l (Gsαl − μl) (8)

where

μl =
1

Nl

∑
s∈l

gs (9)

Σl = diag

(
1

Nl

∑
s∈l

gsg
′
s − μlμ

′
l

)
(10)

Nl is the number of training segments of language l and
∑L

l=1 Nl =
N . According to [6], the optimization problem can be formularized

as follows:

min
αl∈�C

−
∑
s

log
p (Gs|l(s)) p(l(s))∑

∀l p(Gs|l)p(l) (11)

s.t. ‖αl‖2 = 1, l ∈ [1, L]

where p(l) is the prior probability of language l and ‖αl‖2 = α′
l·αl.

We add the constraint ‖αl‖2 = 1 to avoid over-training. (11) is an

optimization problem with equality constraints. We introduce the

augmented Lagrange penalty function [7]

LMMI =−
∑
s

log
p(Gs|l(s))p(l(s))∑

∀l p(Gs|l)p(l)
−
∑
l

λl(‖αl‖2 − 1) +
σ

2

∑
l

(‖αl‖2 − 1)2 (12)
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where λ = (λ1, ..., λL)
′ are the Lagrange multipliers and σ is the

penalty factor.

Given fixed λ and σ, we use conjugate gradient method to solve

(12). To obtain the solution of (11), we need to minimize (12) with

respect to αl step by step with various λ and σ. The optimization

process is listed in algorithm 1.

Algorithm 1 Augmented Lagrangian Method-Equality Constraints

Require: α
(1)
l = [ 1√

C
, ..., 1√

C
]′, λ(1)

l = 1, σ(1) = 1, l ∈
[1, L], ε > 0, k = 1

1: loop
2: Find an approximate minimizer α

(k)
l , l ∈ [1, L] of (12)

3: if
∑

l

(
‖α(k)

l ‖2 − 1
)2
≤ ε then

4: return α
(k)
l

5: end if
6: λ

(k+1)
l ← λ

(k)
l − σ(k)

(
‖α(k)

l ‖2 − 1
)

7: Choose new penalty parameter σ(k+1) ≥ σ(k)

8: k ← k + 1
9: end loop

Since αl is obtained, we utilize one-versus-all strategy to train

SVM for each language. The training procedure is similar to GLDS

system except that the feature as input to SVM is weighted polyno-

mial expansion vectors (7) rather than (1). In recognition, the score

for language l of test segment s is

θ̂sl = w′
l(Gsαl)− bl (13)

where {wl, bl} are the parameters of language l trained by SVM.

3.3. Multi-class logistic regression

In the previous section, we have described a method to train language

dependent models which is composed of two steps: optimization of

the weights αl, l ∈ [1, L] using MMI criterion which is followed by

SVM to obtain the separating hyperplanes. Next, we introduce how

to train the hyperplane wl and weight αl simultaneously. If we drop

the offset term in (13), a linear classifier can be obtained

θsl = w′
lGsαl (14)

= α′
lG

′
swl (15)

It is clear that wl and αl are symmetrical in a bilinear form. This

implies us to use multi-class logistic regression to optimize these

parameters.

Logistic regression (LR) solves a classification task which as-

sumes a sigmoid function acting on a linear model. Rather than one-

versus-one or one-versus-all decomposition of a multi-class classi-

fication problem used in SVM, the multi-class logistic regression

model can be trained simultaneously to discriminate between all

classes [8]. There is a small change in our application that the score

is a bilinear form (14) rather than linear. However, there is not much

difference in the optimization procedure. The objective is to mini-

mize

LLR = −
∑
s

log
exp(θsl(s))∑

l exp(θsl)
+

δ

2

L∑
l=1

(‖wl‖2 + ‖αl‖2) (16)

where δ is a coefficient which controls the ratio between error func-

tion and regularizer. The parameter set Θ = {αl,wl} can be opti-

mized simultaneously by conjugate gradient method. In recognition

phase, the score of test segment s for language l is obtained by (14)

or (15) which gives log-likelihood interpretation.

3.4. Analysis of the training procedure

In mathematics, the bilinear form x′Ay can be expressed in terms

of Frobenius inner product. That is,

x′Ay =
∑
ij

Aijxiyj (17)

= vec(xy′)′ · vec(A)

where vec(·) concatenates the columns of a matrix into a vector. And

therefore, the score (14) can be rewritten as an inner product between

a decision vector and a super-expansion vector which is formed by

concatenating the component dependent polynomial vectors (6)

θsl = vec(wlα
′
l)

′ · vec(Gs) (18)

= ϕ′
l · vec(Gs)

In section 3.1 we mentioned that it is unmanageable to directly per-

form classifier training for the big super-expansion vector vec(Gs)
to obtain ϕl. In fact, (18) indicates that our weighted polynomial

method, which optimizes the different components of parameter sep-

arately, is indeed an alternative solution to the super-expansion vec-

tor classification.

4. EXPERIMENT

4.1. Data set

We evaluate our algorithms on the 14 languages of the close-set lan-

guage detection task of the NIST 2007 Language Recognition Eval-

uation(LRE07). Only those test segments with 30 seconds duration

are selected to measure the performance. All the development and

training data are distributed before LRE07 and do not overlap with

LRE07 evaluation data.

4.2. Configuration

Common feature set of SDC 7-1-3-7 concatenated with 7 static PLP

coefficients are calculated to produce 56 dimensional feature vectors.

The feature streams are processed through energy-based speech ac-

tivity detection to eliminate low-energy speech vectors. Mean vari-

ance normalization, feature warping and feature domain intersession

compensation (FDIC) [9] are then applied to reduce session variabil-

ity during the training and testing procedures.

We pool all the language training data to estimate the UBM with

256 components for the calculation of component posteriori γt(c).
Although a larger UBM(e.g. 1024 mixtures) is likely to capture more

details of acoustic distribution, it will increase considerable compu-

tations in the weighted polynomial extraction process (6).

4.3. Evaluation criteria

We use two criteria to judge our language recognizer. The first one

is multi-class classification error rate. Although it does not take the

costs and priors into consideration, it reflects the discrimination of

the recognizer. The second one is average cost performance, Cavg ,

as defined in the LRE07 evaluation plan [10].

4851



5. RESULTS

5.1. Visualization of MMI

In order to examine the effects of MMI training (11), we use princi-

pal components analysis (PCA)[11] to visualize what happened. For

simplicity, only 3 languages(Chinese, Arabic, Russian) are selected

and we depict the first two principal directions of the polynomial

vectors in figure 1. Each star in figure 1 represents an individual seg-

ment. The left panel shows the original expansion vectors (1) while

the right shows the weighted expansion vectors (7) which are opti-

mized via MMI. It is clear that the stars in the right panel are more

separable between languages than those in the left. MMI training

procedure described in section 3.2 not only reduce the number of

misclassified samples in the marginal region, but also increase the

distances between each pair of language centers.
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Fig. 1. Left panel: original expansion vectors defined by equa-

tion(1). Right panel: weighted expansion vectors defined by equa-

tion(7).

5.2. Comparative results

Experimental results are shown in table 1 in terms of Cavg and clas-

sification error rate. All the results are calibrated by focal multi-

class toolkit1 using a small set of development data. The first line

corresponds to the baseline GLDS system as described in section 2.

Results of the proposed method are shown in the second and third

line. Generally speaking, improvements can be obtained by involv-

ing the weights αl compared to the baseline. Comparing line 2 and

line 3, we can find that LR further improves the performance based

on MMI+SVM. As mentioned in section 3.2 and 3.3, a main differ-

ence between the two methods is that LR optimizes the parameters

simultaneously while MMI+SVM decouples the estimate of αl and

wl which may lead to a solution that is far from the global optimum.

Table 1. Comparison of results on LRE07. Close-set condition, 30
seconds test segment

Cavg(%) Error Rate(%)

baseline GLDS 6.19 19.5

Weighted GLDS:MMI+SVM 4.35 15.9

Weighted GLDS:LR 3.45 13.8

1https://sites.google.com/site/nikobrummer/focalmulticlass

6. CONCLUSION

A weighted polynomial expansion method is proposed to distin-

guish different units in a speech segment. This method is inspired

by GMM-SVM system where the super-vector is the core connec-

tion between GMM and SVM. We map the polynomial vectors to

UBM components frame by frame according to component poste-

riori. However, the idea of stacking all component means can not

be directly used in our case because of the computational issues.

Instead of stacking, we fuse the component dependent vectors by

involving a set of weights and introduce two discriminative training

techniques to estimate the weights and classification boundaries.

Experimental results on LRE07 show consistently improvements

compared to the baseline GLDS system. The drawback of our ap-

proach is computation demanding especially during the extraction

of the component dependent vector (6). We will focus mainly on the

computational simplification in the future work.
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