
CREATING ENSEMBLE OF DIVERSE MAXIMUM ENTROPY MODELS

Kartik Audhkhasi1∗ , Abhinav Sethy2, Bhuvana Ramabhadran2, Shrikanth S. Narayanan1

1Signal Analysis and Interpretation Lab (SAIL), University of Southern California, Los Angeles, CA
2IBM T J Watson Research Center, Yorktown Heights, NY

audhkhas@usc.edu, asethy@us.ibm.com, bhuvana@us.ibm.com, shri@sipi.usc.edu

ABSTRACT

Diversity of a classifier ensemble has been shown to benefit over-
all classification performance. But most conventional methods of
training ensembles offer no control on the extent of diversity and are
meta-learners. We present a method for creating an ensemble of di-
verse maximum entropy (∂MaxEnt) models, which are popular in
speech and language processing. We modify the objective function
for conventional training of a MaxEnt model such that its output pos-
terior distribution is diverse with respect to a reference model. Two
diversity scores are explored – KL divergence and posterior cross-
correlation. Experiments on the CoNLL-2003 Named Entity Recog-
nition task and the IEMOCAP emotion recognition database show
the benefits of a ∂MaxEnt ensemble.

Index Terms— Maximum entropy model, classifier diversity

1. INTRODUCTION

Ensembles of multiple experts have out-performed single experts
in many pattern classification tasks. Well-known examples include
the Netflix Challenge [1], the 2009 KDD Orange Cup [2] and
the DARPA GALE program [3]. Dietterich [4] notes three reasons
which can explain this. First, an ensemble can potentially have lower
generalization error as compared to individual classifiers. Second,
the training of most state of the art classifiers (e.g. neural networks)
involves solving a non-convex optimization problem. Thus, while
the individual classifiers can get stuck in local optima, the ensemble
has a better chance to come close to the global optima. Finally, the
true decision boundary for the problem at hand may be too complex
for a single classifier and an ensemble may better approximate it.

Two popular methods for training classifier ensembles are bag-
ging (bootstrap aggregating) [5] and AdaBoost (adaptive boost-
ing) [6]. Consider a training set T containing N pairs of feature
vectors and target variables, {(xn, yn)}

N
n=1. Bagging proceeds by

sampling T with replacement and creating M bootstrapped data
sets T1, ..., TM . The mth classifier (or regressor) is then trained
on Tm. Given a test feature vector x, results from the M experts
are averaged to yield the estimated target variable. Breiman uses
a bias-variance decomposition to prove that in case of regression,
the mean squared error of the average regressor is less than or equal
to the average mean squared error over the individual regressors.
The second method, AdaBoost, works by sequentially training the
classifiers in the ensemble. The training data for the mth classifier,
Tm, is created by weighted sampling from T , where greater prob-
ability mass is assigned to the instances which are misclassified by
classifiers 1, ..., m− 1. Freund and Schapire have derived an upper
bound on the training error of the ensemble, which indicates that
increasing the size of the ensemble in AdaBoost reduces the training
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error towards zero. AdaBoost can also be viewed as minimizing the
exponential loss between the training and predicted label.

As noted in [7], the diversity of classifiers in an ensemble is
crucial for its overall performance. Ueda and Nakano [8] consider
diversity in an ensemble of regressors and derive a bias-variance-
covariance decomposition for the average regressor’s mean squared
error. The mean squared error reduces as the pairwise diversity be-
tween individual regressors (accounted for by the covariance term)
increases. Tumer and Ghosh [9] extend the analysis to classification
by treating it as regression over the class posteriors. The additional
error of the ensemble over the Bayes optimal error is shown to be
dependent on the correlation coefficient between class posteriors.

A typical approach to introduce diversity is to use radically dif-
ferent classifiers and/or feature sets. However, this does not offer ex-
plicit control on the extent of diversity achieved. Bagging and boost-
ing also suffer from this issue, and require weak/unstable base clas-
sifiers for giving a substantial performance gain. Inspite of the evi-
dence linking diversity and ensemble performance, only a few works
deal with explicity creating diverse classifier ensembles. Negative
Correlation Learning [10] involves decorrelating errors from the in-
dividual neural networks as part of their training. Another work is
DECORATE [11], a meta-learner where the ensemble is built incre-
mentally with each successive classifier trained on a mix of artificial
and natural data. Artificial training instances are labeled contrary to
the opinion of the current ensemble.

This paper focusses on training diverse maximum entropy (Max-
Ent) models. MaxEnt models are state of the art classifiers in many
domains, especially speech and language processing. They pos-
sess several desirable properties such as flexibility in adding new
features, scalable training, easy parameter estimation and minimal
assumptions about the posteriors. The next section discusses our
approach for training a diverse MaxEnt (∂MaxEnt) ensemble. We
present experiments and analysis on the CoNLL-2003 Named Entity
Recognition task and the IEMOCAP emotion recognition database
in section 3. Conclusions and scope for future work are presented in
section 4.

2. TRAINING A ∂MAXENT ENSEMBLE

We first review the standard MaxEnt model to set up the notation.
Let x ∈ X and y ∈ Y denote the feature vector and class label
respectively. The maximum entropy principle aims to find a proba-
bility distribution P (y|x) with maximum entropy subject to the fol-
lowing first order moment constraints for training data T :

N∑
n=1

EP {fi(xn, y)} =
N∑

n=1

fi(xn, yn) ∀i ∈ {1, ..., F} (1)

where fi is the ith feature - an arbitrary function of x and y. EP

denotes the expectation with respect to P (y|xn). This problem can
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be solved by Lagrange’s method, and the resulting distribution is:

PΛ(y|x) =
exp(

∑F

i=1
λifi(x, y))∑

y∈Y
exp(

∑F

i=1
λifi(x, y))

(2)

where λi are the Lagrange multipliers. The log-likelihood function
of the MaxEnt model over training data T is1:

L(Λ) =

N∑
n=1

(

F∑
i=1

λifi(xn, yn)− logZ(xn)) (3)

where Z(xn) is the normalization sum in the denominator of Eq. 2.
We note that L(Λ) is concave in λi∀i. Hence a simple gradient
ascent, Newton-Raphson or a quasi-Newton method (such as L-
BFGS [12]) can be used to find the maximum likelihood parameter
estimates. The gradient of L(Λ) is given as:

∂L(Λ)

∂λi

=
N∑

n=1

(
fi(xn, yn)− EP{fi(xn, y)}

)
(4)

Our task is to train an ensemble of diverse MaxEnt models. We
first study the simpler case of training a MaxEnt model which fits
the data well but is diverse with respect to a reference model QΛ′ .
A natural way to achieve this is to introduce a diversity term in the
log-likelihood function as follows:

Ltot(Λ) = L(Λ) + αD(PΛ, QΛ′) (5)

where α ≥ 0 is the diversity weight and D(PΛ, QΛ′) is the diversity
between the two models. As is noted in [13], there are multiple ways
to capture diversity between two classifiers. We use two intuitive di-
versity scores - the Kullback-Leibler (KL) divergence between pos-
terior distributions and negative posterior cross-correlation.

2.1. KL Divergence Diversity

The KL divergence from QΛ′(y|xn) to PΛ(y|xn) is the following
ensemble average:

KLn(QΛ′ ||PΛ) =
∑
y∈Y

QΛ′(y|xn) log
QΛ′(y|xn)

PΛ(y|xn)
(6)

We did not use KLn(PΛ||QΛ′) due to difficulty in interpreting its
gradient. Adding this expectation over all instances in the training
data, the modified log-likelihood becomes:

Ltot(Λ) = L(Λ) + α

N∑
n=1

KLn(QΛ′ ||PΛ) (7)

While L(Λ) is concave in Λ, KLn(QΛ′ ||PΛ) is convex, attaining
a minimum value of 0 at Λ = Λ′. Thus the overall objective func-
tion is neither concave nor convex and one can only hope to obtain
locally optimal estimates of Λ. Furthermore, KL divergence can po-
tentially approach +∞, making the objective function unbounded.
The gradient of Ltot(Λ) can be written as:

∂Ltot(Λ)

∂λi

=
N∑

n=1

(
fi(xn, yn) (8)

− [(1− α)EP{fi(xn, y)}+ αEQ{fi(xn, y)}]
)

1Penalizing this function by the L1 and L2 norms of Λ has been empiri-
cally shown to give performance benefits.

This expression is the same as for a conventional MaxEnt model
(Eq. 4), except that a linear combination of the feature expectation
under PΛ and QΛ′ is taken. Increasing α has the effect of increas-
ing the weight on the expectation from the reference model (QΛ′ ).
While it seems that KL divergence should succeed in achieving di-
versity between the models, it can be easily shown that this may not
be the case in practice. Let the reference model QΛ′ be trained on
data set T using features {fi}Fi=1 by maximizing L(Λ′). Upon con-
vergence of its training, the gradient of L(Λ′) will be zero. Hence:

N∑
n=1

EQ{fi(xn, y)} =
N∑

n=1

fi(xn, yn) ∀i ∈ {1, ..., F} (9)

If PΛ is trained to be diverse with respect to QΛ′ by maximizing
Ltot(Λ) using the same data and feature set, we can substitute the
above equation in Eq. 8 and arrive at the following result:

∂Ltot(Λ)

∂λi

= (1− α)
N∑

n=1

(
fi(xn, yn)− EP{fi(xn, y)}

)
(10)

Hence the gradients for a MaxEnt and ∂MaxEnt are the same
upto a scalar multiple. At a local optima, the parameter estimates
will satisfy the same constraint as in the case of a conventional Max-
Ent model. This problem with KL divergence can be mitigated to
some extent by using distinct training sets or features for Q′ and PΛ.
However it necessitates the search for another diversity score. The
next subsection introduces posterior cross-correlation to this end.

2.2. Posterior Cross-Correlation (PCC) Diversity

Making a simplistic assumption, consider independent random vari-
ables yP ∼ PΛ(y|x) and yQ ∼ QΛ′(y|x). The conditional proba-
bility of them being unequal is:

Pr{yP �= yQ|x} = 1−
∑
y∈Y

PΛ(y|x)QΛ′(y|x) (11)

Thus, negative cross-correlation between the two posterior distribu-
tions is a natural diversity score. The modified log-likelihood func-
tion can be written as follows:

Ltot(Λ) = L(Λ)− α

N∑
n=1

∑
y∈Y

PΛ(y|xn)QΛ′(y|xn) (12)

This objective function is again neither convex nor concave. How-
ever, unlike KL divergence, it has the following finite bounds:

min
y∈Y

QΛ′(y|xn) ≤
∑
y∈Y

PΛ(y|xn)QΛ′(y|xn) ≤ max
y∈Y

QΛ′(y|xn)

The gradient can be shown to be equal to:

∂Ltot(Λ)

∂λi

=

N∑
n=1

fi(xn, yn)−

N∑
n=1

[(1− ZPQ(xn)α)EP {fi(xn, y)}

+ ZPQ(xn)αEPQ{fi(xn, y)}] (13)

where PQΛ,Λ′(y|xn) is the normalized product distribution:

PQΛ,Λ′(y|xn) =
QΛ′(y|xn)PΛ(y|xn)

ZPQ(xn)
(14)

and ZPQ(xn) =
∑

y∈Y
QΛ′(y|xn)PΛ(y|xn) is the normalization

constant. The above gradient is similar to the one for KL divergence
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except for two modifications – expectation with respect to the prod-
uct distribution is used instead of QΛ′ and the linear combination
weights become dependent on the instance xn. Thus, for instances
where ZPQ(xn) is high (i.e. the current and reference model poste-
riors are highly correlated), more weight is given to the expectation
with respect to the product distribution. In effect, the model deviates
more from the ML estimate in these instances. Also, in case of iden-
tical training sets and features for the two models, the gradient does
not reduce to the standard MaxEnt model’s gradient. Till now, we
have discussed a method to train a MaxEnt model PΛ to be diverse
with respect to another MaxEnt model QΛ′ . The next subsection
discusses one possible method in which an ensemble of M ≥ 2
∂MaxEnt models can be trained.

2.3. Sequential Training of a ∂MaxEnt Ensemble

Consider the training of an ensemble of M MaxEnt classifiers
PΛ1

, ..., PΛM
with corresponding training sets T1, ..., TM . A sim-

ple strategy is to train the ensemble sequentially. Let MaxEnt(T )
denote a function which trains a conventional MaxEnt model on T
and returns the parameters Λ. Let ∂MaxEnt(T ,QΛ′ ,α,Λ0) denote a
function which trains a ∂MaxEnt model on T with respect to QΛ′

using α as the diversity weight and Λ0 as the initial value of the
parameters. The sequential training process is as follows:

• Train model 1: Λ1 = MaxEnt(T1).

• For m = 2 → M

– Initialize: Λ0
m = MaxEnt(Tm).

– Interpolate models 1, ..., m− 1:
Q(y|xn) =

1

m−1

∑m−1

j=1
PΛj

(y|xn)

∀y ∈ Y, n ∈ {1, ..., |Tm|}.

– Train model m: Λm = ∂MaxEnt(Tm,Q,α,Λ0
m)

Since the objective function is no longer concave, we train a
∂MaxEnt model in two passes. The first pass finds the ML es-
timates of the parameters. The second pass performs ∂MaxEnt
training using the ML parameters as the starting point. This ensures
that L-BFGS converges at a local maxima which is not too far from
the ML estimate while ensuring diversity. α is tuned based on F1
score on a development set. During the test phase, labels from
all classifiers in the ensemble are fused by simple plurality. More
sophisticated ways of classifier fusion were not experimented with
since they are not the focus of this paper.

3. EXPERIMENTS AND RESULTS

The CoNLL-2003 Named Entity Recognition (NER) Task has four
types of named entities - persons, locations, organizations and mis-
cellaneous [14]. The English task consists of news wire stories from
the Reuters corpus between August 1996 and August 1997. We used
binary features from Stanford’s NER system which include word
identity, POS tags, word character N-grams etc [15]. Original train-
ing, development and evaluation sets were used. Performance was
measured in terms of the F1 score for named entity detection [14].

Table 1 shows the F1 scores for ensembles of 5 conventional
MaxEnt and ∂MaxEnt models using the two diversity scores. Two
cases are considered – when the 5 training sets are identical and
when they are created by bagging. We can observe that for identical
training sets, KL divergence gives almost the same performance as 1
MaxEnt model. The minute difference is due to deliberate smooth-
ing of the posterior distributions to prevent KL divergence from be-
coming indeterminate. On the other hand, PCC-based ∂MaxEnt

Identical training sets Dev set Eval set

1 MaxEnt model 91.22 86.75
5 KL-∂MaxEnt (αd = 1.66) 91.31 86.73

(αe = 1.58) - 86.77
5 PCC-∂MaxEnt (αd = 1.46) 91.70 87.05

(αe = 1.27) - 87.25
Bagged training sets
5 MaxEnt models 90.49 85.98

5 KL-∂MaxEnt (αd = 0.24) 90.62 86.15
(αe = 0.13) - 86.34

5 PCC-∂MaxEnt (αd = 1.45) 91.21 86.74
(αe = 1.45) - 86.74

Table 1. NER F1 scores for 5 MaxEnt and ∂MaxEnt models us-
ing KL/PCC diversity. αd and αe denote the best values of α tuned
on the development and evaluation set respectively. Values in bold
indicate a statistically significant improvement over the MaxEnt en-
semble at the 5% level using McNemar’s test.
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Fig. 1. F1 score on the NER evaluation set for PCC-∂MaxEnt and
bagged ensembles of increasing size. αd was tuned on the develop-
ment set and αe on the evaluation set.

models give an appreciable increase in performance. In the case
of bagged training sets, KL divergence is able to achieve a statisti-
cally insignificant performance gain over 5 MaxEnt models. How-
ever, PCC-based ∂MaxEnt models still perform significantly better.
We note that in [16], gradient boosting with 10000 2-level decision
trees and Newton-Raphson optimization of the exponential loss was
shown to give a similar gain over a MaxEnt model.

Since PCC performs significantly better than KL divergence, we
analyse it further. Figure 1 shows the F1 score on the evaluation set
with an increasing number of models (1 to 25). The performance of
bagging saturates much earlier than the ∂MaxEnt ensemble. Thus
the relative performance improvement of the ∂MaxEnt ensemble in-
creases as the number of models is increased. The performance for
αe indicates an upper bound on the performance for the ∂MaxEnt
ensemble. As a final analysis of the ∂MaxEnt model with PCC
diversity, Figure 2 shows the variation of the development set F1
score and average log-likelihood for an ensemble of 5 models with
increasing α. The F1 score increases with α until around α = 1.45,
after which it starts decreasing again. Furthermore, its behaviour
becomes more variable with increasing α because the optimization
problem is become more non-concave. It is interesting to note that
the log-likelihood remains practically constant until α = 1, while
the F1 score increases significantly over the same range. The drop
in log-likelihood from α = 1 to 1.45 does not adversely impact the
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Fig. 2. F1 score and average log-likelihood for the NER develop-
ment set with increasing diversity weight α. Five ∂MaxEnt models
were used with PCC diversity on bagged data.

Identical training sets Dev set Eval set
1 MaxEnt model 43.79 44.64

5 PCC-∂MaxEnt (αd = 0.33) 48.73 48.10
(αe = 0.33) - 48.10

Bagged training sets
5 MaxEnt models 43.01 43.65

5 PCC-∂MaxEnt (αd = 0.52) 46.74 46.09
(αe = 0.68) - 47.09

Table 2. Weighted F1 scores for emotion classification with 5 mod-
els on the IEMOCAP database.

performance.
Next, we conducted emotion classification experiments on the

IEMOCAP database [17]. It is an acted, multimodal and multi-
speaker database consisting of dyadic sessions where actors are
asked to elicit emotional expressions. Each session was labeled
by multiple human evaluators in terms of 4 categorical emotions -
{angry, happy, sad, neutral}. The multiple labels were fused using
simple plurality and sessions where a tie occured were excluded.
A total of 5498 sessions were used, and 385 acoustic-prosodic
features from the OpenSMILE toolkit [18] were extracted. These
included pitch, energy, Mel-filter bank coefficients and their per-
session statistics. Table 2 shows the classification performance.
The ∂MaxEnt model ensemble performs significantly better than
1 MaxEnt model trained on the entire data and 5 MaxEnt models
trained on bagged data. With 25 models PCC-∂MaxEnt models, we
get an additional improvement of approximately 1-2%. This shows
the benefit of using the ∂MaxEnt ensemble on a more difficult
classification task with continuous features.

4. CONCLUSION AND SCOPE FOR FUTURE WORK

This paper presented a method to create diverse ensembles of Max-
Ent models. Two intuitive diversity scores were explored - KL
divergence and negative posterior cross-correlation. Experiments
conducted on two classification tasks (the CoNLL-2003 Named
Entity Recognition Task and the IEMOCAP emotion classification
database) show the advantages of training a ∂MaxEnt ensemble. It
was demonstrated that under reasonable assumptions, KL divergence
achieves no gain in performance, while posterior cross-correlation
performs significantly better. There are multiple directions for future
work. Introduction of a diversity term in the standard MaxEnt model
objective function made it non-concave – an undesirable property

for optimization. We need to explore ways to train diverse models
while retaining concavity. Second, since gradient boosting shows a
similar gain over a MaxEnt model (albeit with thousands of mod-
els in the ensemble), the link between popular variants of boosting
and ensemble diversity needs to be explored. Finally, insight into
the choice of diversity scores for a given ensemble and database is
required.
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