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ABSTRACT
This paper focuses on the problem of environmental noises

in human-human communication and in automatic speech

recognition. To deal with this problem, the use of alter-

native acoustic sensors –which are attached to the talker

and receive the uttered speech through skin or bones– is

investigated. In the current study, throat microphones and

ear bone microphones are integrated with standard micro-

phones using several fusion methods. The results obtained

show that the recognition rates in noisy environments are

drastically increased when these sensors are integrated with

standard microphones. Moreover, the system does not show

any recognition degradations in clean environments. In fact,

recognition rates also increase slightly in clean environments.

Using late fusion to integrate a throat microphone, an ear

bone microphone, and a standard microphone, we achieved

a 44% relative improvement in recognition rate in a noisy

environment and a 24% relative improvement in recognition

rate in a clean environment.

Index Terms— Alternative sensors, ear bone micro-

phone, throat microphone, fusion, robust speech recognition

1. INTRODUCTION

In human-human communication and in automatic speech

recognition robustness against environmental noises is a crit-

ical issue. Although automatic speech recognition in clean

environments shows very high recognition rates, the per-

formance of speech recognition systems operating in noisy

environments drastically decreases. Currently, several meth-

ods deal with this problem. These methods include speech

de-noising, model adaptation to noisy conditions, multimodal

processing, and use of microphone arrays.

In addition to these methods, several studies have been

introduced which use alternative sensors to capture uttered

speech [1, 2]. These sensors are attached to the talker and re-

ceive the uttered speech directly through skin and bone. As

a result, alternative sensors show higher robustness against

noise compared with air-conductive microphones. The ma-

jority of the related studies use throat microphones [3] or a
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Fig. 1: (a) Throat microphone (b) Ear bone microphone.

combination with standard microphones [4, 5, 6] to capture

uttered speech.

The main difference between the current work and the

previous works is the use of a new ear bone microphone as

an additional alternative sensor and also the methods used to

integrate several acoustic sensors. In the current work, how-

ever, a feature fusion method and a late fusion method were

used to integrate the sensors. In addition, in the case of late

fusion, an adaptive weighting method was proposed, which

does not require any adjustment of the stream weights. The

authors also suggest a method for automatic segmentation of

noisy speech data by using an alternative sensor along with

the desired microphone during recording.

2. ALTERNATIVE ACOUSTIC SENSORS

Figure 1 shows the throat and ear bone microphones used in

this study. Both are commercial and inexpensive products.

The throat microphone is attached to the speaker’s neck; it

captures the vibrations through the skin. An ear bone mi-

crophone is attached inside the talker’s ear and receives the

uttered speech through the jaw bone.

Figure 2 shows the spectrogram of an utterance received

by the three sensors. Given that skin and bones act as a low-

pass filter, the upper frequencies for both throat and ear bone

microphones are not included in the speech signal. In the
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(a) Standard microphone

(b) Ear bone microphone

(c) Throat microphone

Fig. 2: Spectrogram of a clean utterance received by a stan-

dard microphone, an ear bone microphone, and a throat mi-

crophone.

case of the throat microphone the upper frequency is about

4600 Hz and in the case of the ear bone microphone the upper

frequency was about 5250 Hz. As a result, recognition rates

decrease when using an alternative sensor alone in a clean

environment, compared with using a standard microphone.

On the other hand, in noisy environments alternative sensors

show higher recognitions. The current study aims at taking

advantage of the different sensors in both clean and noisy en-

vironments by integrating them using fusion methods applied

in multimodal signal processing [7].

3. METHODOLOGY

3.1. Corpus and statistical modeling

For the automatic speech recognition experiments, two male

and two female speakers were employed. The corpus con-

sisted of the 120 words of the Japanese Diagnostic Rhyme

Test [8]. Each speaker uttered each word 10 times in a clean

environment and 5 times as babble noise at 70 dB(A) was

played back through a loudspeaker. For training clean hid-

den Markov models (HMMs), 5 instances of each word under

clean condition were used. For testing, 5 instances of each

word under clean conditions and 5 instances of each word un-

der noisy conditions were used. The statistical models were

whole-word, 7-state HMMs. Each state was modeled with 2

Gaussian distributions. The feature vectors were of length 36

(i.e., 12 MFCC, 12 ΔMFCC, and 12 ΔΔMFCC).

(a) Standard microphone

(b) Throat microphone

Fig. 3: Waveforms of a noisy utterance received by a standard

microphone and a throat microphone.

3.2. Data segmentation

For each speaker, the training and test sets were recorded in

a single session. Thus before any further processing, it was

necessary to segment all of the utterances. Because all of the

channels were recorded synchronously, the segmentation task

was performed using the channel having the best signal-to-

noise ratio (SNR), namely the throat microphone, as shown

in Figure 3. In particular, the great immunity of the throat

microphone to external noise was very useful for segmenting

the noisy part of the data.

Since the SNR for the throat microphone channel was

very good, it was possible to segment the data by averaging

the power spectrum on a given frequency band ([100, 5000]

Hz) and thresholding that average value to detect speech seg-

ments. To choose the threshold, we used the structure of

our data sets: a quasi periodical succession of short utter-

ances. An iterative algorithm selected the adequate thresh-

old for each of the speakers, so that the proportion of signal

samples –the sample above the threshold– was approximately

one-third. After this first segmentation, gaps of more than 150

ms and dents of less than 100 ms were suppressed to obtain

the final segmentation (head and tail guard intervals of 50 ms

were also added). Finally, the quality of the segmentation was

assessed by a listening test. In total, 99.53% of the utterances

were successfully segmented and a mere 3.95% of extracted

segments were noises.

3.3. Integration of multiple sensors

This section introduces the fusion methods used to integrate

the several acoustic sensors. In the present study, a feature

fusion method and a late fusion methods were used.

3.3.1. Concatenative feature fusion

The feature concatenation is the simplest state synchronous

fusion method. It uses the concatenation of two or more sig-
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nals as the joint feature vector:

OAB
t = [O

(A)T

t , O
(B)T

t ]T ∈ RD (1)

where, OAB
t is the joint feature vector, O

(A)
t is the feature

vector of the first sensor, O
(B)
t is the feature vector of the

second sensor, and D is the dimension of the joint feature

vector. In these experiments, the dimension of each stream

was 36. Thus, the dimension D of the joint feature vectors

was 72 and 108.

3.3.2. Late fusion

In the late fusion method, two single HMM-based classifiers

were used for the two sensors. For each test utterance (i.e.,

isolated word), the two classifiers provided an output list that

included all the word hypotheses with their likelihoods. Sub-

sequently, all of the separate mono-modal hypotheses were

combined into the bi-modal hypotheses using the weighted

likelihoods, as given by:

logPAB(h) = λalogPA(h|O
¯ A) + λblogPB(h|O

¯ B) (2)

where, logPAB(h) is the score of the combined bi-modal hy-

pothesis h, logPA(h|O
¯ A) is the score of the h provided by

the first classifier, and logPB(h|O
¯ B) is the score of the h

provided by the second classifier. λa and λb are the stream

weights with the constraints:

0 ≤ {λa, λb} ≤ 1, and λa + λb = 1 (3)

In these experiments, the weights were experimentally ad-

justed by maximizing the word accuracy on several experi-

ments. In the case of clean test data, the weight of the stan-

dard microphone stream was adjusted to 0.7 and the weight

of the body-conducted microphone stream was adjusted to

0.3, respectively. In the case of noisy test data, the weight

of the standard microphone stream was adjusted to 0.2 and

the weight of the body-conducted microphone was adjusted

to 0.8, respectively.

The procedure described in this study finally resulted in a

combined N-best list in which the top hypothesis was selected

as the correct bi-modal output.

3.4. Late fusion with adaptive weights

A disadvantage of the previously described late fusion method

is the choice of appropriate weights. Thus, in late fusion, the

weights were adjusted experimentally across several experi-

ments, and different weights were used for clean and noisy

test data. To avoid this, a novel adaptive weighting method

based on the likelihoods of the mono-modal hypotheses in

the N-best list is proposed. The weights were self-adjusted

by a normalized non-linear transformation of the likelihoods.
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Fig. 4: Word accuracy using clean and real noisy data.

Fig. 5: Word accuracy using clean and real noisy data in the

feature fusion method.

In the case of integration of two sensors, the weights will be

as follows:

λa =
logPA(h|O

¯ A)

logPA(h|O
¯ A) + logPB(h|O

¯ B)

and,

λb =
logPB(h|O

¯ B)

logPA(h|O
¯ A) + logPB(h|O

¯ B)
(4)

4. EXPERIMENTS

Figure 4 shows the results obtained when using single sen-

sors. As shown, in the case of clean test speech, the standard

microphone achieved the highest word accuracy. In the case

of the ear bone and the throat microphones, the word accu-

racies were similar. Using real noisy test data, the word ac-

curacy drastically decreased in all cases. The highest word

accuracy in noisy conditions was obtained when using the ear

bone microphone.

Figure 5 shows the results when the sensors used in this

study were integrated using concatenative feature fusion. As

shown, by integrating the standard microphone with a body-

conducted microphone, the word accuracy in noisy condi-

tions increased without any decrease for clean conditions.
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Fig. 6: Word accuracy using clean and real noisy data in the

late fusion.
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Fig. 7: Word accuracy using clean and real noisy data in the

late fusion with adaptive weights.

The highest word accuracy using noisy speech was achieved

when integrating ear bone and throat microphones. Using

this method, however, the word accuracy for clean data was

the lowest one. Integrating all of the three sensors appears to

be the most effective solution.

Figure 6 shows the results obtained with the late fusion

method. Integrating a body-conducted sensor with the stan-

dard microphone, the word accuracy in noisy conditions in-

creased without a decrease for clean conditions. Integrating

all of the sensors, the word accuracy increased from 41.08%

to 66.97%, with the difference being statistically significant

(after conducting the ANOVA test).

Figure 7 shows the results obtained when late fusion with

adaptive weighting was used. Using this fusion method, the

second best results were achieved. Compared to the late fu-

sion with pre-adjusted weights (i.e., the best case), the dif-

ferences are not statistically significant. The main advantage

is that adjusting the weights for the several streams was not

necessary. Also, there was no need to take clean or noisy con-

ditions into account. The weights were self-adjusted based on

the likelihoods, and the results show that the proposed method

works very well.

5. CONCLUSIONS

In this study, experimental results using alternative acoustic

sensors are introduced. Using feature fusion method and late

fusion method, a standard microphone was integrated with ear

bone microphone and throat microphone resulting in signifi-

cant improvements in the recognition rates in both clean and

noisy environments. A novel adaptive weighting method in

late fusion, which does not require any weight adjustments

was also introduced.
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