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ABSTRACT

This paper presents our preliminary works on exploring un-

supervised training of subspace gaussian mixture models for

under-resourced CTS recognition task. The subspace mod-

el yields better performance than conventional GMM model,

particularly in small or middle-sized training set. As an ef-

fective way to save human efforts, unsupervised learning is

often applied to automatically transcribe a large amount of

speech archives. The additional auto-transcribed data may

help to improve model accuracy. In this paper, experiments

are carried out on two publicly available English conversa-

tional telephone speech corpora. Both GMM and SGMM

model in combination with unsupervised learning are exam-

ined and compared in this paper.

Index Terms— Speech recognition with low resources,

unsupervised learning, subspace acoustic model.

1. INTRODUCTION

Currently, the majority of state-of-art speech recognition sys-

tems relies on a large amount of transcribed speech data to

robustly estimate HMM-GMM acoustic model. However, the

acquisition of large training resources is a challenging task.

Especially, the transcription of audio data typically involves

expensive manual labors of language experts in particular, and

is very time-consuming. In the case of under-resourced lan-

guage or dialect in general, the collection of large training

data is one of major bottlenecks for developing LVCSR sys-

tem.

The unsupervised learning has been gaining popularity as

a method to greatly reduce human efforts. Typical procedure

of unsupervised learning involves using a seed model, trained

on small or middle-sized hand-transcrbied corpus, to recog-

nize a large amount of unlabeled speech data. The recognized

hypotheses may be used together with manual transcriptions

to re-train new acoustic model. This approach has been shown

to be effective in Broadcast News and Broadcast Conversation
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recognition tasks[1, 2, 3, 4, 5, 6]. Another solution to the da-

ta sparsity is the recently proposed subspace gaussian mixture

modeling approach. The SGMM model uses a set of relatively

low-dimensioned vectors to capture variances between states’

output probability distributions, while the majority of model

parameters is shared across states. The more compact repre-

sentation of SGMM model results in more robust estimation

of parameters and improved performance than conventional

GMM model, especially when the amount of available train-

ing data is limited[7, 8].

In our knowledge, this work may be the first attempt of

applying unsupervised learning on subspace acoustic mod-

el. The additional improvement is expected by combining the

above two methods and that is the motivation of our works.

The key features of our work presented in this paper include:

(1) the UBM, which is used to initialize main subspace mod-

el, is showed to provide more gains from bootstrapping on

additional untranscribed speech data. (2) for recognition task

in CTS data, the highly erroneous procedure of transcribing

unlabeled speech data requires a more effective data filter-

ing method. An improved lattice-based utterance confidence

is proposed to enhance the reliability of automatic transcrip-

tions.

The remainder of this paper is organized as follows. First,

the definition of SGMM model is simply recapitulated in sec-

tion 2. In section 3, the unsupervised training procedures of

SGMM model is described in detail. A lattice-based data se-

lection method is proposed to improve data filtering. Section

4 presents experimental setups and comparative results. Sec-

tion 5 provides concluding remarks.

2. REVIEW OF SGMM MODEL

In Subspace Gaussian Mixture Model, the pdf (probability

distribution function) emitted by HMM state j is modeled by

a mixture of Gaussians:

p(x|j) =
I∑

i=1

wji · N (x;μji,Σi) (1)

μji = Mi · vj (2)
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wji =
expwT

i · vj∑I
i′=1 expw

T
i′ · vj

(3)

As shown in Eq.(2)-(3), the mean vector μji and weight

wji of each mixture are not direct model parameters. In-

stead, they are linearly or log-linearly dependent on vector

vj . The vj is a vector specific to state j and is used to model

the variations between different HMM states. The mapping

from state-specific vector vj to mixture mean μji and weight

wji is through structure Mi and wi. The mean projection

matrix Mi and weight projection vector wi, plus covariance

matrix Σi, are globally shared among all states. The SGM-

M model has compact parametric representation because the

dimension S of vj is typically being around the same as the

feature dimension D and often far less than the parameter size

of each mixture in comparison with diagonal covariance GM-

M, i.e. S ≈ D and S � I × (2D + 1). Thus, the vj lies

in a subspace of GMM parameter space. In addition, a SGM-

M state can be extended to contain substates and this can be

viewed as a tradeoff between model complexity and accuracy,

like shown in Eq.(4)-(6). The speaker subspace and CMLLR

transformation is not considered in this paper.

p(x|j) =
Mj∑

m=1

cjm

I∑

i=1

wjmi · N (x;μjmi,Σi) (4)

μjmi = Mi · vjm (5)

wjmi =
expwT

i · vjm∑I
i′=1 expw

T
i′ · vjm

(6)

3. UNSUPERVISED LEARNING OF SGMM

3.1. General procedure of unsupervised training

The procedure of unsupervised learning used in this paper is

similar to [5, 9] and is applicable for both GMM and SGMM

models. It consists of following steps:

• Seed model training: initial model (seed model)

is trained on small amounts of manually transcribed

speech data.

• Transcription generation: the seed model is used to

recognize a corpus of unlabeled speech segments. The

recognized 1-best hypotheses or word lattices are used

together with manually transcribed corpus for latter

model retraining.

• Data selection: the confidence score is used to mea-

sure the reliability of recognized transcriptions. The

segments with confidences below a predefined thresh-

old are simply omitted. A lattice-based utterance confi-

dence measure is proposed in this paper to enhance data

filtering. The detailed description of our data selection

method is presented in subsection 3.3.

• Model retraining: the new acoustic model can be

trained on the enlarged transcribed speech corpus.

The above procedure may be applied iteratively and the

acoustic model can be incrementally refined. The criterion

used to estimate acoustic model parameter in this study is re-

stricted to the Maximum Likelihood framework, but the work

can be extended to discriminative training[2].

3.2. Bootstrapping UBM

Although the Universal Background Model (UBM) doesn’t

appear in SGMM model definition, however it serves two im-

portant purposes: (1) a prototype to initialize SGMM model;

(2) pruning Gaussians, i.e. Gaussian-selection, during likeli-

hood computation. Essentially, the UBM is a generic mixture

of Gaussians that models all speech classes (phonemes and

silence)[7] and thus it can be trained without transcription-

s. Usually, the UBM training is a separate process from the

training of SGMM. Based on the above facts, the unlabeled

data may be used together with hand-transcribed data to refine

UBM model and the scheme is called “UBM bootstrapping”

in our work.

3.3. Data selection

Usually, 1-best recognized hypothesis is used as a good ap-

proximation of the true transcription in unsupervised learn-

ing. The unique hypothesis is then used to align between

audio data and phone models for EM-based HMM training.

Alternative strategy is using lattice, instead of 1-best hypoth-

esis, to represent recognition result. The lattice can be viewed

as a compact representation of multiple possible hypotheses.

These hypotheses in lattice may be applied to alleviate the ad-

verse effect of recognition errors[1]. Moreover, the lattice can

be also used to compute posterior probability of hypothesized

word or whole utterance. The posterior probability is often

applied as an indicator for quality of recognized hypotheses.

In general, the posterior probability of word W which oc-

curs in [ts, te] can be computed by following equation:

PPlat =

∑
W−,W+

P(Otste|W−WW+)P(W−WW+)

∑
W ′

P(O|W ′)P(W ′)
(7)

with PPlat(Wtste|O) is the sum of the probabilities of all

paths that contain the hypothesis word W from ts to te, W−
and W+ denoting any word sequence before ts and after te
respectively, W ′ being any word sequence. Eq.(7) can be ef-

ficiently implemented by the well-known forward-backward

algorithm. Similarly, the posterior probability of most proba-

ble hypothesis π̂ can be obtained with the numerator replaced

by the likelihood of π̂ in Eq.(7). The posterior probability of

π̂ is further normalized by the number of hypothesized words

N and utterance duration L of π̂. As scaling factor γ increases
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the result with more hypothesized words and longer duration

is more preferred. The parameter γ is empirically determined

on the development set .

CMlat(π̂) = PP(π̂)
γ

N·L (8)

4. EXPERIMENTAL SETUPS AND RESULTS

The experiments in this paper are carried out using HTK, Kal-

di speech recognition toolkit and SRILM toolkit to develop G-

MM, SGMM acoustic model and N-Gram backoff language

model for the English system and tested for the CTS task.

4.1. Corpora

The manually transcribed corpus for acoustic model train-

ing is Callhome English CTS trainig set released by LDC

in 1997. The amount of available data in this training set is

about 15 hours. The assuming untranscribed corpus used in

this work contains total 30 hours speech data collected from

three sources: 11h from SWB1, 13h from Fisher1 and 6h

from Fisher2.

Two test sets are used to evaluate the systems, 2h Call-

home English evaluation set CH97 and 8h RT03 evaluation

set RT03.

4.2. System description

In signal processing module, the analysis frame length and

shift are 25ms and 10ms respectively. The speech frames

are parameterized as PLP (Perceptual Linear Prediction) fea-

tures. The 39 dimensional feature includes 12 PLP coef-

ficients plus energy with their first-order and second-order

derivatives. The cepstral mean and variance normalization

are also applied.

The acoustic model is a context-dependent HMM model

with 1816 tied states obtained from decision tree clustering.

Each triphone model has the left-to-right topology with 3

emitting states and the pdf (probability distribution function)

of each state consists of 16 diagonal-covariance Gaussian

mixtures. In SGMM modeling, there are 400 full-covariance

Gaussian mixtures per state and the subspace dimension be-

ing equal to 40.

The bigram language model is interpolated using English

Callhome, Switchboard1 and Fisher2 training corpus and it

contains 35K words. The corpus for language model training

is manually checked to ensure that it contains no transcrip-

tions of assumed untranscribed corpus. The perplexity of lan-

guage model on Callhome English evaluation set is 156.89,

and 189.21 on RT03 evaluation set respectively. During al-

l experiments, the language model is not changed since the

main concern is to study the unsupervised training of acous-

tic model.

4.3. Results

4.3.1. baseline and UBM bootstrapping

The baseline acoustic models are trained on 15 hours of man-

ually transcribed Callhome training data and evaluated on two

test sets. The first entry in Table 1 gives the WER perfor-

mance of GMM model, while the rest two entries for SGMM

models. Since the baseline models are trained only on Call-

home data, the wer on CH97 are much lower than wer on

RT03. The second and third entry in Table 1 represent base-

line SGMM models initialized by different UBMs: the UBM

in SGMM is trained only on 15h hand-transcribed data while

in SGMM-UBM, total 45h data, i.e. 15h hand-transcribed

data plus additional 30h untranscribed data, are used together

to enhance UBM. It can be observed that there is benefit from

using bootstrapped UBM to initialize main subspace model.

Thus, the subspace models in SGMM-UBM are used as the

baseline models for the rest of this paper.

Table 1. The WER(%) performance of baseline seed model.

Model #substates CH97 RT03

GMM 1816 55.78 64.54

SGMM
1816 51.75 61.95

4000 50.44 60.76

6000 50.00 60.51

SGMM-UBM
1816 51.05 61.55

4000 50.22 60.43

6000 49.78 60.00

4.3.2. data selection

Before carrying out unsupervised acoustic model training, the

impact of different confidence measures on data selection is

assessed. The baseline SGMM with 6K substates is used to

decode 30h untranscribed data. Table 2 shows the WER of

two types of lattice-based confidences with threshold value

varying from 0.5 to 0.9. The WER is obtained by compar-

ing 1-best hypotheses with corresponding true transcription-

s. It can be seen that with the extreme values of threshold

0.0, meaning no data to be filtered, the poor WER 55.44%

has necessitated the data selection. On the other hand, with

tight threshold 0.9, more data were removed and only a small

portion of data remained. Clearly, the threshold serves as a

way to trade off between the size and quality of usable data.

The columns with labels word-conf and utter-conf in Table

2 represent the effect of word and utterance confidence in da-

ta selection, respectively. It can be observed that there are

substantial improvements of quality for remained usable data

using utterance confidence over the conventional word confi-

dence. Thus, the utterance confidence is adopted in the rest of

this paper for data filtering.
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Table 2. The comparison of WER on untranscribed data using

two confidence measures.

threshold word-conf utter-conf

data size wer(%) data size wer(%)

0.5 23h 42.31 21h 38.11

0.6 19h 40.13 17h 35.60

0.7 15h 34.56 13h 31.84

0.8 11h 30.87 10h 26.44

0.9 9h 25.69 7h 20.08

0.0 data size: 30h, wer: 55.44%

4.3.3. unsupervised training

After data selection available auto-transcribed data are gen-

erated as described in the previous section. Table 3 gives

the WER of both SGMM and GMM models trained on en-

larged training data obtained in unsupervised manner. The

impact of confidence threshold, ranging from 0.5 to 0.9, on

performance is also examined in Table 3. The iterative addi-

tion scheme of auto-transcribed data is not considered in our

work since the total amount of additional data is relatively s-

mall with respect to the hand-transcribed training data, 30h

v.s. 15h. Thus, the additional data are directly used together

with hand-transcribed data as re-training data. It is observed

that the threshold 0.6 provides the best performance for both

SGMM and GMM system. The relative WER reductions of

SGMM with 6K substates over its baseline are 3.1% on CH97
and 3.0% on RT03; the gains for GMM case is limited: 1.5%

on CH97 and 1.9% on RT03.

Table 3. The effect of confidence threshold on performance

of unsupervised learning.

CH97 evaluation set

model #substates WER(%)

0.9 0.8 0.7 0.6 0.5

SGMM

1816 50.57 50.42 50.31 50.27 50.29

4000 49.92 49.65 49.41 49.35 49.41

6000 49.33 49.12 48.62 48.24 48.87

GMM 1816 55.32 55.13 55.03 54.92 54.99

RT03 evaluation set

model #substates WER(%)

0.9 0.8 0.7 0.6 0.5

SGMM

1816 60.60 60.23 59.60 59.50 59.53

4000 60.04 59.65 58.97 58.99 59.12

6000 59.90 59.12 58.67 58.17 58.60

GMM 1816 64.23 64.02 63.84 63.26 63.51

5. CONCLUSIONS

In this paper, we have combined compact SGMM modeling

with unsupervised learning for under-resourced CTS recogni-

tion task. The UBM bootstrapping makes full use of untran-

scribed data to provide a better initialization for main sub-

space model; the utterance confidence is proposed to improve

data filtering. Experimental results demonstrate that using the

suggested training procedure the manual efforts of transcrib-

ing speech data can be greatly reduced for low-resourced sce-

narios.
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