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ABSTRACT

Computer lip-reading is one of the great signal processing

challenges. Not only is the signal noisy, it is variable. How-

ever it is almost unknown to compare the performance with

human lip-readers. Partly this is because of the paucity of hu-

man lip-readers and partly because most automatic systems

only handle data that are trivial and therefore not representa-

tive of human speech. Here we generate a multiview dataset

using connected words that can be analysed by an automatic

system, based on linear predictive trackers and active appear-

ance models, and human lip-readers. The automatic system

we devise has a viseme accuracy of ≈ 46% which is compara-

ble to poor professional human lip-readers. However, unlike

human lip-readers our system is good at guessing its fallibil-

ity.

Index Terms— automated lip-reading, speech recogni-

tion, visual speech

1. INTRODUCTION

Automated lip-reading involves extracting features from re-

gions of interest in images containing the mouth of a speaker

and then mapping the temporal patterns observed in these fea-

tures to the underlying spoken words [1]. This is notoriously

difficult as speech involves more than just the visible articu-

lators, so there is ambiguity in the process as many sounds

are visually indistinguishable. In addition the visible articula-

tors are free to adopt the position of upcoming sounds if there

is no immediate requirement on their position for the current

sound (e.g. early lip-rounding during /s/ in anticipation of the

rounded vowel /u/ for the word “soon”) — a phenomenon

known as coarticulation. This means that for the same under-

lying sound, the visible speech articulators can be in different

positions and so the visual features can be very different.

Despite increasing research interest over the past decade

or so, the performance of automated lip-reading systems1

falls significantly below the performance of acoustic speech

recognisers. This partly is because of the reasons highlighted

above, but more fundamentally the choice of visual fea-

tures is important. It has been shown [2, 3] that data-driven

model-based features tend to be more reliable than general

1We consider visual-only recognition rather than the more common au-

diovisual recognition.

image-based features, but still the poor performance prevents

any real-world application of these systems. There is a real

need for lip-reading systems, e.g. human lip-readers have

been used in criminal court cases to transcribe video evidence

when the accompanying acoustic channel is unavailable. This

is expensive as lip-readers with the required ability are rare.

In this paper we are interested in comparing the performance

of our automated lip-reading system with the performance of

expert human lip-readers.

2. DATA CAPTURE

An audiovisual corpus of 12 speakers, 7 male and 5 female,

each reciting 200 sentences selected from the Resource Man-

agement Corpus [4] was recorded. The database has a vocab-

ulary size of approximately 1000 words, and was recorded in

full-frontal view using using a tri-chip Thomson Viper Film-

Stream high-definition camera. The speakers were instructed

to keep their head relatively still, and each was recorded in a

single sitting to ensure reasonably constant illumination.

3. AUTOMATED LIP-READING

Mode 1 Mode 2 Mode 3

Fig. 1. The first three modes of variation of a combined shape

and appearance model. The modes are shown at +3 standard

deviations (top row) and -3 standard deviations (bottom row).

The basis of our lip-reading system [3] is a set of viseme-

level Hidden Markov Models (HMMs), which are built

and manipulated using HTK [5]. The visual features from

which these models are trained are Active Appearance Model

(AAM) parameters [6] as these have been shown to be more

reliable than traditional image-based features [2]. The modes

of variation of the AAM are shown in Figure 1. The AAM
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features are transformed using a LDA transform similar to [7],

see Figure 2 for an overview. These features are then up-

sampled to 100 frames per second and augmented with the

first and second derivatives — see [3] for a more detailed

description. The effect of this is to increase the separation

in the features between viseme classes and to reduce the

dependency on speaker identity. See Figure 3 for example.

n

n+j

n-j

Mx(2j+1)

LDA

class label of
each frame 
class label of

frame n

M(2j+1)x1

Nx1

static feature

per-speaker 
z-score 

normalisation

Nx1

Fig. 2. An overview of the window-based LDA transform.

(A) (B)

Fig. 3. Sammon projection of (A) MFCCs and (B) LDA trans-

formed AAM features. In both cases the features represent 12

speakers and two visemic classes (/f/ (red dots) and /u/ (green

triangles). Notice the good separation between the different

viseme classes for both the acoustic and the visual data. The

Hi-LDA transform effectively removes the influence of the

speaker from AAM features which are highly speaker depen-

dent [8].

To generate viseme-level transcriptions, the acoustic

speech from the dataset is force-aligned to generate phone-

level transcriptions, and these are converted to viseme tran-

scriptions using a standard phoneme-to-viseme mapping [9].

These viseme-level transcriptions are then used to train and

test both the visual-only and audio-only HMMs. Corre-

spondingly, the pronunciation dictionary is also translated

from phoneme-level pronunciations to viseme-level pronun-

ciations. 14 HMMs are trained on visual features: one for

each viseme and one to model ‘visual silence’. A ‘short

pause’ model is tied to the middle state of the silence model.

Left-right HMMs with three states and a diagonal covariance

Gaussian Mixture Model (GMM) associated with each state

are used.

The system is trained to lip-read a single speaker. Sin-

stage methods key parameters

AAM shape and appear-

ance [6]

98% variation

PCA on shape and appear-

ance [6]

98% variation

1.feature

extrac-

tion

forms hyper vector, see also

Figure 2

n = 2

LDA on hyper vector 99% variation

global and speaker z-score

normalisation [3], upsample to

100fps

flat start training HCompV 3 state, 1 GMM

component

2.HMM

training

embedded re-estimation

HERest
4 iterations

GMM component increment 1 to 2, 5, and 9

construct language model 2-gram word

3.HMM

recogni-

tion

Viterbi decoding HVite p = 10, s = 5,

#GMM compo-

nent = 5

Table 1. Key methods and parameters used by the automated

lip-reading system.

gle Gaussian HMMs are initialised using flat start training via

HTK command HCompV, and this is followed by a series of

embedded re-estimation (HERest). The number of Gaussian

mixture components is increased from 1 to 2, 5, and 9. A

bigram word language model is constructed from the train-

ing data. During recognition, various insertion penalties p =
{−20, 0, 10} and the grammar scale factors s = {0, 1, 5, 15}
are tested. Table 1 lists methods and some key parameters

used by the automated lip-reading system. The set of pa-

rameters that provide the highest accuracy on a validation set

are applied to the test set, which results in a viseme recogni-

tion accuracy of 45.67% and a word recognition accuracy of

14.08%. We are interested in determining how this accuracy

compares with the performance of expert human lip-readers.

4. HUMAN LIP-READING

Six expert human lip-readers participated in a two-part exer-

cise to transcribe (silent) video sequences from our RM cor-

pus. All are practising professional lip-readers and were paid

to produce transcripts of the best possible quality. Each lip-

reader worked alone and independently. For the first stage of

the test, the lip-readers were provided with 10 videos of a sin-

gle speaker and the accompanying transcriptions. They were

free to use these videos as they wished so they could acquaint

themselves with the style of the speaker. The lip-readers were

then asked to transcribe 10 test videos of the same speaker

for which the transcriptions and the audio were not available.

The aim of this test was to measure the raw ability of the lip-

readers — no information (e.g. regarding the vocabulary, the

domain of discourse, etc.) was provided other than the tran-
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scriptions for the ten training videos.

The second stage of the experiment was designed to mea-

sure the affect of having knowledge analogous to the training

data. The lip-readers were supplied with transcriptions for

1000 sentences from the dataset (but not the videos) and a

list of the 971 words that form the vocabulary of the corpus.

They were then asked to repeat the task of transcribing the

previous ten test videos and revise their transcripts where re-

quried. Four of the six lip-readers completed both stages of

the experiment, whistle two stated that their results in stage 2

did not differ from stage 1 and that we should use their stage

1 results for stage 2.

5. RESULTS

For both tasks measuring human performance, we the word

recognition accuracy and the viseme recognition accuracy by

comparing with the ground-truth transcriptions. The results

are presented in Table 2 and Figure 4.

Table 2. Word and viseme accuracy for six individual lip-

readers compared with the performance of an automated sys-

tem. Note: “*” indicates that a participant recommended we

used their stage 1 score in stage 2.

lip-reader
stage 1 stage 2

word acc% viseme acc% word acc% viseme acc%

#1 30.99 57.01 0 39.7

#2 8.45 34.63 8.45∗ 34.63∗

#3 18.31 56.12 40.85 60.6

#4 0 51.04 7.04 64.78

#5 2.82 30.75 2.82∗ 30.75∗

#6 46.48 73.73 69.01 85.37

computer - - 14.08 45.67

There is a noticeable change in accuracy from stage one to

stage two for the four lip-readers that conducted both stages

of the experiment. It seems that most lip-readers were able to

make positive use of the contextual and grammar information

provided at the beginning of stage two, and the improvement

in accuracy implies perhaps a general language model used

in stage one was replaced by a more targeted language model

that is specific to the task. If this information is not incorpo-

rated with visual cues correctly, it can lead to misunderstand-

ing, for example, see the case of lip-reader #1.

From these results we can make several observations.

First, all lip-readers are different. They recognise different

words and sentences from the same material, and some lip-

readers are more accurate than others. Second, lip-readers

apply complicated language modelling during lip-reading.

At stage one, lip-readers received very limited information

about the subject and the topic that was carried by training

material. The transcriptions from lip-readers were largely in

the scope of day-to-day language, reflecting a general, broad-
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Fig. 4. Word accuracy plotted against viseme accuracy for six

expert lip-readers. The colour-coded arrow indicates the di-

rection of change from the first stage to the second stage. The

performance of an automated lip-reading system evaluated on

the same material (marked as “computer”) is also included.

scoped language model that was applied. The exception is

lip-reader #6, who seems to have tuned the model towards

the scope of the dataset. More information was provided at

stage two, which resulted in transcriptions becoming more

focussed around the domain of the RM dataset. This would

imply a narrow-scoped, targeted model was learned using

the provided information. It is worth pointing out the case

of lip-reader #3, who had a 4.4% increase in viseme perfor-

mance, but gained a 22.5% absolute improvement on word

accuracy. One explanation is that the person perceived the

same visual cues in both stages, but a suitable language model

helped to make right decision during recognition. Finally, the

performance of automated lip-reading falls within that of the

human lip-readers, although it remains a lot worse than an

acoustic speech recognition system. Given the importance of

context, it is frustrating that we were not able to persuade all

human lip-readers to persevere with stage 2 - human are not

insightful about their true word accuracy.

6. FUTURE WORK

We previously have extensively investigated the choice of fea-

ture for use in automated lip-reading [2, 3], and in this paper

we have shown that the performance of a state-of-the-art lip-

reading system using reliable features is comparable to a rea-

sonably capable human lip-reader on a similar task. A signifi-

cant focus of our future work will be to improve the language

modelling to bridge the gap in performance between current

levels and the performance of the better human lip-readers.

In [3] we showed that a key problem is the number of dele-

tions in the recogniser output, see the relative proportion be-

tween the leading diagonal and the column labelled Del in
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Figure 5. These deletions undoubtedly are due to coarticu-

lation effects, and we suspect that human lip-readers make

better use of knowledge of the language to help overcome

these issues (e.g. the significant improvement in performance

for three of the four lip-readers that undertook both parts of

the test after being provided with example transcripts and the

vocabulary). There is no more visual information provided

to the lip-readers between stages one and two, rather they are

better able to make use of the limited visual information with

increased knowledge of the language. An interesting question

is how can this aspect of language modelling be incorporated

into an automated lip-reading system.

 ah eh   f  ao  t  uh  w  k  p  iy  aa  ch  oo  Del  %c %d
ah 295 11 10 8 14 10 6 16 5 29 6 1 10 240 70.1 36.31
eh 28 330 2 9 11 6 4 9 3 19 3 2 3 189 76.9 30.58
f 2 1 205 2 4 1 9 4 0 1 0 1 0 66 89.1 22.3
ao 12 7 3 70 8 5 5 4 0 4 7 0 6 83 53.4 38.79
t 37 23 30 17 949 8 28 60 8 24 14 11 5 426 78.2 25.98
uh 2 3 3 3 1 30 2 1 0 3 3 3 3 49 52.6 46.23
w 2 1 6 2 7 0 227 17 1 3 0 4 1 132 83.8 32.75
k 23 12 13 16 28 1 25 638 7 18 9 7 13 408 78.8 33.5
p 9 8 10 0 11 2 29 12 241 2 3 1 5 129 72.4 27.92
iy 27 32 7 13 10 4 12 21 6 359 3 7 6 287 70.8 36.15
aa 1 3 0 0 1 2 1 3 1 1 20 0 1 25 58.8 42.37
ch 4 1 6 2 10 1 7 8 1 2 3 56 5 73 52.8 40.78
oo 2 4 1 1 5 1 2 0 0 0 0 0 44 37 73.3 38.14
Ins 62 45 30 22 69 13 55 73 8 50 27 10 24
Total 75.26 31.78

prediction

gr
ou

nd
 t

ru
th

Fig. 5. Confusion matrix for a speaker-independent lip-

reading system trained and tested using LDA transformed

AAM features.

7. CONCLUSIONS

Automated lip-reading (visual-only speech recognition) has

been receiving increasing interest in recent years, but the per-

formance of state-of-the-art systems still is significantly be-

low the performance of acoustic speech recognisers on the

same task. In this paper we have attempted to quantify the

performance of automated systems in terms of the perfor-

mance of expert human lip-readers on the same task. We

found that the accuracy of human lip-readers can be improved

significantly when limited knowledge of the language is intro-

duced, and that in less than ideal conditions (i.e. strange vo-

cabulary and sentence structure), good human lip-readers are

able to exploit language well and improve their accuracy. We

conclude that the performance of an automated lip-reading

system on a reasonably large vocabulary (≈ 1000 words) and

continuous speech is comparable to a reasonable human lip-

reader. Note that all human lip-readers that took part in these

tests consider themselves expert and all offer their services as

expert lip-readers.

A potential criticism on this work is that the automated

lip-reading system are provided with informations such as vo-

cabulary and training transcripts that can lead to a sophisti-

cated language model, yet only 2-gram model is applied. In

the future, there is a plan to apply a higher order language

model, e.g., 3-gram, 4-gram, and utilise a discriminative train-

ing scheme.
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