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ABSTRACT

This paper presents a method to improve the out-of-

vocabulary (OOV) word detection performance by combin-

ing multiple speech recognition systems’ outputs. Three

different fragment-word hybrid systems, the phone, subword,

and graphone systems, were built for detecting OOV words.

Then outputs from each individual system were combined

using ROVER. Two combination metrics were explored in

ROVER, voting by word frequency and voting by both word

frequency and word confidence score. The experimental

results show that the OOV word detection performance of

the ROVER system with confidence scores is better than the

ROVER system with only word frequency, as well as any of

the individual hybrid systems.

Index Terms— OOV word detection, hybrid model,

ROVER, confidence score

1. INTRODUCTION

Most speech recognition systems are closed-vocabulary rec-

ognizers and do not accommodate out-of-vocabulary (OOV)

words. But in many applications, e.g. voice search or spoken
dialog systems, OOV words are usually content words such as

names and locations which embed crucial information to the

success of these tasks. Speech recognition systems in which

OOV words can be detected are therefore of great interest.

The fragment-word hybrid speech recognition system ap-

plies a hybrid language model (LM) during decoding to ex-

plicitly represent OOV words with phones, subwords, gra-

phones, or generic word models [1][2][3][4]. Since different

hybrid models had been individually proposed, in our pre-

vious work we compared OOV word detection and recovery

performance of the phone, subword and graphone hybrid sys-

tems [5]. We found that the subword and graphone hybrid

systems performed better than the phone hybrid system.

Combining outputs from multiple decoders has been used

in many spoken language processing tasks. For example, Fis-

cus proposed ROVER which adopts a word voting scheme

to improve the speech recognition performance [6]. Gales et

al. investigated cross-site combination using cross-adaptation

and ROVER for machine translation [7]. And Natori et al.

studied the use of syllable transition network derived from

multiple recognizers’ outputs for spoken term detection [8].

In this paper, we investigated system combination tech-

niques to improve the OOV word detection performance.

ROVER was used to produce a combined OOV word de-

tection hypothesis by voting among multiple hybrid systems’

outputs. Rastrow et al. reported that adding confidence scores

in the hybrid system improved the OOV word detection per-

formance [9]. Besides the baseline ROVER method, which

only measures word frequency in the voting module, we also

studied the effectiveness of incorporating word confidence

scores. The proposed system combination methods were

tested on the Wall Street Journal (WSJ) and Broadcast News

(BN) datasets.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the details of the hybrid system and system

combination using ROVER. Sections 3 and 4 discuss our ex-

periments and results. Concluding remarks are provided in

Section 5.

2. METHOD

2.1. OOV word detection using a hybrid system

In the hybrid system, a fragment-word hybrid LM was ap-

plied during decoding to detect the presence of OOV words.

We trained an open-vocabulary word LM from a large text

corpus and a closed-vocabulary fragment LM from the pro-

nunciations of in-vocabulary (IV) words. When training the

word LM, all OOV words were matched to the same unknown

token “〈unk〉”. Then by combining the word LM with the

fragment LM, a single hybrid LM was generated. For exam-

ple, the unigram probability of a fragment in the hybrid LM

is calculated as

PH(fi) = PW (〈unk〉) · PF (fi) · COOV , (1)

where PW (〈unk〉) is the unigram probability of the unknown

token in the word LM, PF (fi) is the unigram probability of

the fragment in the fragment LM, and COOV is the cost of

entering an OOV word during decoding. Similarly, we can

compute N-gram probabilities in the hybrid LM.

2.2. Fragments

For the current study, we built three different hybrid sys-

tems, which are the phone, subword and graphone systems.
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Of these, the phone and subword systems model only the

phoneme level, while the graphone system also incorporates

an orthography level.

2.2.1. Phone

In the phone hybrid system, an N-gram phone LM was trained

and combined with a word LM to generate the hybrid LM.

Then during decoding, OOV words were represented by

phone sequences. For example, our system recognized the

OOV word “ashland” as “AE SH AH N”.

2.2.2. Subword

Subwords, such as “AH N” and “EY SH AH N”, are itera-

tively trained phone sequences of variable lengths [2]. First,

we added all phones to a subword inventory to ensure full cov-

erage of all possible OOV words. In each iteration, the most

frequent subword bigram was merged and added to the sub-

word inventory. Its occurrences in the training corpus were

also concatenated into one single entry. This transformed

training data was then used in the next iteration. The training

ended when a target number of subword units was reached.

2.2.3. Graphone

A graphone is a grapheme-phoneme pair of English letters

and phones. For example, one possible representation of the

word “speech” is

speech =
(

s

S

)(
pee

P IY

)(
ch

CH

)
.

In our system, a trigram joint-sequence model was trained

from the in-vocabulary (IV) dictionary and used to segment

IV words into graphone sequences [10]. Then a graphone LM

was trained and merged with a word LM to build the hybrid

LM. A graphone can have a minimum and maximum number

of letters and phones. Here, we used the same range for both

letters and phones, where the minimum was set to 1 and the

maximum was varied from 2 to 4.

2.3. System combination using ROVER

ROVER was originally developed at NIST to produce com-

posite speech recognition system output when the outputs of

multiple recognizers are available. In many cases, the com-

posite recognition output has lower word error rate (WER)

than any of the individual recognizers. In ROVER, the multi-

ple recognizers’ outputs are first combined into a single, min-

imal cost word transition network (WTN) via iterative appli-

cations of dynamic programming (DP) alignments. Then, the

resulting WTN is re-scored and searched to find the optimal

word sequence. The general rescoring formula is

Score(wi) = α · N(wi)∑
w N(wi)

+ (1 − α) · C(wi), (2)

where N(wi) is the count of word w at the i-th alignment

in the WTN, C(wi) is the confidence score of wi, and α is

the weight used to balance the word frequency and the con-

fidence score. Another parameter C(@) is used to set the

confidence score of the NULL transition arc. For details of

ROVER, please refer to [6].

The confidence score C(wi) is estimated from the confi-

dence of word wi in each individual system. Because we used

ROVER for OOV word detection instead of speech recogni-

tion, we were more concerned about where the OOV word

occurs in the transcription than what is the correct pronun-

ciation of that word. When calculating the confidence score

for wi in the lattice of the j-th hybrid system, depending on

whether wi is an IV or OOV word, we summed over the pos-

terior probabilities of all IV or OOV words in that region.

Confj(wi) =
∑

k∈[si,ei]

{
P (IVk) wi is IV

P (OOVk) wi is OOV
(3)

where si and ei are the start and end time of wi, and P (IVk)
is the posterior probability of an IV word in that region,

while P (OOVk) is the posterior probability of an OOV

word. Confj(wi) is then normalized by the sum of pos-

terior probabilities of all words in that alignment to make

sure Confj(wi) ∈ [0, 1]. There are two ways to compute

C(wi) from the individual confidence score Confj(wi), i.e.,

the average and the maximum of individual scores. In our

experiments, we found that the performance of those two

methods was essentially the same, although the latter one

occasionally performed better.

In this paper, two ROVER systems with different rescor-

ing modules were tested. In the baseline system, α in Eqn. 2

was set to 1, the optimal word sequence was found by only

considering the frequency of word occurrences in each align-

ment from the WTN. In the second ROVER system, α was

set to a value between 0 and 1, both the word occurrences

and word confidence scores were measured when rescoring

the WTN. Since different hybrid systems usually generate dif-

ferent fragment sequences for the same OOV word, ROVER

cannot be applied directly. Therefore, we converted all frag-

ment sequences in the recognizer output into the same OOV

token “*OOV*”. IV words were not changed so as to have

a better alignment for building the transition network. Multi-

ple outputs of individual systems were always aligned to the

one with the best performance. The optimal values of α and

C(@) were searched from 0 to 1 with a step size of 0.2 using

the grid search.

3. EXPERIMENT SETUP

3.1. Dataset

We tested our system on the Wall Street Journal (WSJ) Nov.92

20k evaluation task and the Broadcast News (BN) HUB4-96
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20k F0 evaluation task. The WSJ0 and the BN 92-96 text cor-

pora were used to train the word LM. In particular, the 20k

most frequent words were choosed as vocabulary, yielding an

OOV rate of 2% for the WSJ task and 4% for the BN task. An

open-vocabulary 20k-word LM was trained for each task. The

recognition dictionary was generated by looking up pronun-

ciations for IV words in CMUdict (v.0.7a). The fragment LM

was trained from the recognition dictionary without weight-

ing each word by frequency. Then we built the bigram hybrid

LMs for the WSJ and BN tasks, respectively. The acoustic

models were trained from the WSJ-SI284 data and HUB4-96

BN data. The SPHINX3 decoder was used for recognition.

The word error rate (WER) using the 20k-word bigram LM

was 12.21% and 30.79% on the WSJ and BN task, which is

comparable to the results of other groups.

3.2. Evaluation metrics

We measured the WER lower bound of each system by as-

suming that the detected OOV words could eventually be cor-

rectly recovered and recognized. This WER lower bound re-

veals how good the recognition performance would be if we

recovered the orthography forms of detected OOV words.

We also used the miss rate and false alarm (FA) rate de-

fined below to evaluate the OOV word detection performance.

Miss =
#OOVs in reference − #OOVs detected

#OOVs in reference
× 100%

(4)

FA =
#OOVs reported − #OOVs detected

#IVs in reference
× 100% (5)

We calculated the miss rate and false alarm rate at the word

level, which measures both the presence and positions of

OOV words in an utterance. This is because, in practical

applications, knowing where OOV words are located is more

valuable than simply knowing the fact that OOV word(s) exist

in an utterance.

4. RESULTS

In our system, the optimal number of subwords and optimal

graphone length were determined by testing on development

data. For the WSJ task, the 500-subword system and the

length 3 graphone system performed better than others. While

for the BN task, we selected the 200-subword system and the

length 2 graphone system. To draw the FA-Miss curve, when

generating hybrid LMs, we adjusted the OOV cost COOV

from 0 to 2.5 with a step size of 0.5. For ROVER, we com-

bined outputs from multiple recognizers using LMs with the

same OOV cost.

4.1. The baseline ROVER system

In the baseline ROVER system, when rescoring the transition

network, only word frequency was considered. ROVER will
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Fig. 1. The OOV word detection results

identify an OOV word in a region if at least two systems re-

ported OOV words in that alignment. Fig. 1 shows the OOV

word detection results of the WSJ and BN tasks. We can find

that the ROVER system with word frequency does not always

outperform all individual systems. In fact, if two systems act

similarly, the ROVER system usually tends to follow the per-

formance of those two systems. For example, when the FA

rate is low, the subword line and graphone line are very close

and both lower than the phone line. In this case, the baseline

ROVER system also beats the phone system, and even slightly

better than the other two individual systems. But when the FA

rate is high, sometimes two worse systems perform similarly.

Then the ROVER system usually gets a poor performance and

cannot win the best individual system. This fact can also be

observed from Fig. 2, where the WER lower bound of the

baseline ROVER system also follows the majority of three

systems. Simply voting by word frequency isn’t good enough
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Fig. 2. The WER lower bound

for OOV word detection. Therefore, we incorporated word

confidence score into the voting module.

4.2. ROVER with confidence score

In the second ROVER system, to rescore the transition net-

work, both the word frequency and the word confidence score

were used. The parameter α and C(@) were determined us-

ing grid search on development sets. For both the WSJ and

BN tasks, the optimal values for α and C(@) are all 0.8. As

presented in Fig. 1, different from the baseline ROVER sys-

tem, the ROVER system with confidence score always out-

performs all individual systems. We can also learn this from

the WER lower bound of each system in Fig. 2, where the

ROVER system with confidence score is much better than the

other systems. Furthermore, the recognition performance of

the proposed ROVER system (rover-conf) is much better than

the word recognition system (word-baseline). This improve-

ment in WER is due to two factors: 1) less errors were made

on IV words, 2) more OOV words were correctly detected.

5. CONCLUSION AND FUTURE WORK

In this work, we studied system combination using ROVER

for OOV word detection. Three hybrid systems with differ-

ent fragment types were built—the phone, subword, and gra-

phone systems. Two ROVER systems, the baseline ROVER

system and the ROVER system with confidence score, were

compared. From our experimental results, we found that sys-

tem combination using only word frequency tends to follow

the performance of the majority of systems. As a result, it

doesn’t work well if the performance of most individual sys-

tems is not satisfactory. On the other hand, when considering

both word frequency and word confidence score, the ROVER

system can outperform all individual hybrid systems.

In the future, we would like to investigate the effective-

ness of incorporating other features, such as context features,

into the rescoring computation. Additional evidence, which

might be present in multiple N-best lists and lattices, may also

yield additional accuracy in OOV word detection.
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