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ABSTRACT

This paper proposes an acoustic modeling technique based on
Bayesian framework using multiple model structures for speech
recognition. The Bayesian approach is a statistical technique for
estimating reliable predictive distributions by marginalizing model
parameters, and its effectiveness in HMM-based speech recognition
has been reported. Although the basic idea underlying the Bayesian
approach is to treat all parameters as random variables, only one
model structure is still selected in the conventional method. Multi-
ple model structures are treated as latent variables in the proposed
method and integrated based on the Bayesian framework. Further-
more, we applied deterministic annealing to the training algorithm
to estimate appropriate acoustic models. The proposed method ef-
fectively utilizes multiple model structures, especially in the early
stage of training and this leads to better predictive distributions and
improvement of recognition performance.

Index Terms— Speech recognition, Hidden Markov model,
Bayesian methods, Deterministic annealing

1. INTRODUCTION

The maximum likelihood (ML) criterion has been used for train-
ing HMMs in conventional hidden Markov model (HMM)-based
speech recognition systems. However, since the ML criterion pro-
duces point estimates of model parameters, the accuracy of estima-
tion may decrease when only a small number of training data is
available. The Bayesian approach is a statistical technique for es-
timating reliable predictive distributions by marginalizing model pa-
rameters, and it can be used to accurately estimate observation dis-
tributions even if there are few training data. However, calculations
become complicated due to a combination of latent variables (i.e.,
state sequences and model parameters). The variational Bayesian
(VB) method has been proposed as an effective method of approx-
imation for the Bayesian approach [1] to solve this problem, and it
performed well in HMM-based speech recognition [2].

There have been many efforts in the conventional speech recog-
nition based on generative models to find appropriate model struc-
tures to predict observation vector sequences (e.g., multi-mixture
models, clustering techniques, and more complicated models). How-
ever, most of these systems use only “one” model structure, e.g.,
topologies of HMMs, the number of states and mixtures, types of
state output distributions, and parameter tying structures. In most
practical cases, it is insufficient to represent a true model distribu-
tion because a family of such models usually does not include a
true distribution. One of solutions of this problem is to use mul-
tiple model structures. Although several approaches using multiple
model structures have already been proposed, e.g., random forest [3],
ROVER [4], and model structure annealing [5], the consistent inte-
gration of multiple model structures based on the Bayesian approach

has not seen in speech recognition. This paper focuses on integrating
multiple phonetic decision trees based on the Bayesian framework
in HMM based acoustic modeling. The proposed method is derived
from a new marginal likelihood function which includes the model
structures as a latent variable in addition to HMM state sequences
and model parameters, and the posterior distributions of these latent
variables are obtained using the VB method.

The conventional VB method sometimes suffers from the lo-
cal maxima problem because of the combination of latent variables.
To overcome this problem, we have proposed a training algorithm
applying the deterministic annealing EM (DAEM) algorithm [6] to
Bayesian speech recognition, and reported its effectiveness in the
local maxima problem [7]. Since the proposed method uses the mul-
tiple model structures, the model structures are additionally treated
as a latent variable in the VB method. This means that the proposed
framework might cause a serious local maxima problem. Therefore,
to improve the optimization algorithm, the DAEM algorithm is ap-
plied to the training process. The proposed method effectively uti-
lizes multiple model structures, especially in the early stage of train-
ing and this leads to better predictive distributions and improvement
of recognition performance.

The rest of this paper is organized as follows. Section 2
describes speech recognition based on the variational Bayesian
method. Bayesian speech recognition using multiple model struc-
tures obtained by applying the DAEM algorithm is described in
Section 3. Section 4 presents results obtained from continuous
phoneme recognition experiments, and the final section draws con-
clusions and introduces future work.

2. SPEECH RECOGNITION BASED ON VARIATIONAL
BAYESIAN METHOD

The Bayesian approach assumes that model parameter Λ is a ran-
dom variable, while the ML approach estimates a constant model
parameter. Let O = (o1, o2, . . . , oT ) be a set of training data and
T denotes the number of frames; the log marginal likelihood is rep-
resented by:

log P (O) = log
X
Z

Z
P (O, Z | Λ)P (Λ) dΛ, (1)

where Z = (z1, z2, . . . , zT ) is a sequence of HMM states. Since
the model parameters are marginalized out, the effect of over-fitting
is mitigated. However, it is difficult to solve integral and expectation
calculations. Calculation becomes much more complicated, espe-
cially when the model includes latent variables. To overcome this
problem, the variational Bayesian (VB) method has been proposed
as a tractable method of approximation in the Bayesian approach [1].
The lower bound of the log marginal likelihood is maximized in the
VB method instead of the true likelihood. The lower bound of the
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log marginal likelihood is defined by using Jensen’s inequality:

log P (O) = log
X
Z

Z
Q(Z ,Λ)

P (O, Z | Λ)P (Λ)

Q(Z ,Λ)
dΛ

≥
X
Z

Z
Q(Z ,Λ) log

P (O, Z | Λ)P (Λ)

Q(Z ,Λ)
dΛ, (2)

where Q(Z ,Λ) is an approximate distribution of posterior distri-
bution P (Z ,Λ | O). Optimal posterior distribution Q(Z ,Λ) is
estimated by maximizing the lower bound. However, the calcu-
lation becomes complicated because of the combination of latent
variables. Thus, the random variables in the variational method
are assumed to be conditionally independent of one another, i.e.,
Q(Z ,Λ) = Q(Z)Q(Λ). Under this assumption, the optimal VB
posterior distributions that maximize the lower bound are obtained.
Since the VB posterior distributions Q(Λ) and Q(Z) that are ob-
tained are dependent on each other, these updates should be iterated.
It has been reported that speech recognition based on the VB method
outperformed the ML approach in speech recognition [2].

3. A MODEL STRUCTURE INTEGRATION BASED ON A
BAYESIAN FRAMEWORK

Some approaches using multiple model structures have recently
been proposed to increase model complexity (e.g., random for-
est [3], ROVER [4], and model structure annealing [5]). Although
various integration techniques and criteria can be considered, this
paper focuses on a model structure integration based on the Bayesian
framework.

3.1. Statistical model including multiple model structures

We define a marginal likelihood function treating model structures
as latent variables to consider the framework using multiple model
structures in Bayesian speech recognition.

P (O) =
X
m

X
Z

Z
P (O, Z , m,Λm)dΛm, (3)

P (O, Z , m,Λm) = P (O, Z | m,Λm)P (Λm | m)P (m), (4)

where m ∈ {1, . . . , M} indexes the model structures, M is the
number of the model structures, and Λm ∈ {Λ1, . . . ,ΛM} de-
notes a set of model parameters for the m-th model structure. Prior
distribution P (Λm | m) is prepared for each model structure m.
Note that this paper assumes structures of a phonetic decision tree
is treated as the model structure. In Eq. (4), the state sequence Z
is not dependent on the model structures m. This means that the
state sequences are estimated from a combination of the multiple
model structures, and it is expected reliable posterior distributions
of state sequences are estimated. Although the proposed model can
be trained in the same manner as the variational Bayesian method,
it has been confirmed [7] that even conventional Bayesian speech
recognition using a single model structure suffers from the local
maxima problem. Since the proposed method not only treats state
sequences and model parameters but also model structures as latent
variables, the local maxima problem is more serious than conven-
tional Bayesian speech recognition. Deterministic annealing was
adopted in the proposed framework to overcome this problem.

3.2. Training algorithm based on deterministic annealing

The problem of maximizing the log likelihood function is reformu-
lated in the DAEM algorithm [6] as the problem of minimizing a free

energy function. To adopt deterministic annealing for the proposed
method, we redefine the free energy function based on the marginal
likelihood function in Eq. (3) as:

F̄β = − 1

β

X
m

X
Z

Z
log P β(O, Z | m,Λm)

× P β(Λm | m)P β(m)dΛm, (5)

where β is called a temperature parameter. The upper bound of the
free energy function is defined by using Jensen’s inequality:

F̄β ≤ − 1

β

X
m

X
Z

Z
Q̃(Z , m,Λm)

× log
P β(O, Z | m,Λm)P β(Λm | m)P β(m)

Q̃(Z , m,Λm)
dΛm. (6)

Since approximate distribution Q̃(Z , m,Λm) is a joint distribution
of the three latent variables, calculating the upper bound becomes
more complicated than that with the conventional VB method us-
ing only one model structure. To obtain the minimum upper bound,
we assume the constraint: Q̃(Z , m,Λm) = Q̃(Z)Q̃(m)Q̃(Λm |
m). Note that the dependence between model parameters and model
structures remains as a prior distribution in Eq. (4). Under this con-
straint, optimal posterior distributions Q̃(Z), Q̃(m), and Q̃(Λm |
m) are obtained as:

Q̃(Z) = CZ exp

fiD
log P β(O, Z | m,Λm)

E
Q̃(Λm|m)

fl
Q̃(m)

,

(7)

Q̃(m) = CmP β(m) exp

fiD
log P β(O, Z | m,Λm)

E
Q̃(Z)

+ log
P β(Λm | m)

Q̃(Λm | m)

fl
Q̃(Λm)

, (8)

Q̃(Λm | m) =CΛm
P β(Λm | m)

× exp
D
log P β(O, Z | m,Λm)

E
Q̃(Z)

, (9)

where CZ , Cm and CΛm
correspond to the normalization terms of

Q̃(Z), Q̃(m), and Q̃(Λm | m) and 〈·〉Q denotes the expectation
with respect to Q. Since optimal variational posterior distributions
Q̃(Z), Q̃(m), and Q̃(Λm | m) depend on one another, from Eqs.
(7), (8), and (9), these distributions should be iteratively updated.
Although the number of the model structures are considered infinity
theoretically, the finite number is set to M practically. In the pro-
posed framework, after the multiple model structures are prepared,
the posterior distribution of the model structure is estimated auo-
matically. Since the proposed framework adopts the deterministic
annealing process for training, the temperature parameter β is grad-
ually increasing from 0 to 1. At the initial temperature (β � 0), the
variational posterior distributions Q̃(Z), Q̃(m), and Q̃(Λm | m)
take a form that has a nearly uniform distribution. This means that
all model structures are uniformly used for estimating the posterior
distribution of the model parameters and the state sequences in the
initial step. While the temperature is decreasing (β → 1), the form
of Q̃(Z), Q̃(m), and Q̃(Λm | m) change to each original poste-
rior distribution. The factorized posterior distributions at this stage
gradually interact with one another while taking into account the re-
liability of their estimates, and this process leads to a good solution
as a joint posterior distribution. The Q̃(Z), Q̃(m), and Q̃(Λm | m)
at the final temperature (β = 1) take each original posterior distribu-
tion. Through this process, the optimal posterior probability of each
model structure can be automatically estimated.
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3.3. Related topics

We reported a method of approximating the joint optimization of
state sequences and model structures based on ML-based speech
recognition [5]. There was a problem in the ML-based framework in
that an accurate posterior probability for the model structures could
not be automatically estimated. This is because the ML criterion se-
lected the largest model structure, and this was inappropriate due to
the over-fitting problem. The proposed method, on the other hand,
can be used to automatically estimate an adequate posterior distribu-
tion for the model structures because the Bayesian criterion can be
used for model selection.

The random forest (RF) [3] is one technique that uses multiple
model structures. However, there are some differences between RF
and the proposed method. One difference is how the model struc-
tures are constructed. The RF method changes the data set or ques-
tion set used for constructing the model structures. Although the
proposed approach can also use these methods, we used the Bayesian
framework to construct adequate model structures. Another differ-
ence is how multiple model structures can be used. Several ways
of combining models have been tried in the RF method because
there are no criteria for estimating combined weights. The proposed
method can be used to automatically estimate the posterior probabil-
ities of model structures based on the consistent Bayesian criterion.

4. EXPERIMENTS

4.1. Experimental condition

We conducted speaker independent experiments on continuous
phoneme recognition to evaluate the effectiveness of the proposed
method, where training data from 18,823 Japanese sentences and
testing data from 100 sentences were prepared from Japanese News-
paper Article Sentences (JNAS). Speech signals were sampled at a
frequency of 16 kHz and windowed at 10-ms frame rates using a 25-
ms Hamming window. The spectrum parameter vectors consisted of
12-order MFCC and their delta and delta-delta coefficients. Three-
state left-to-right HMMs were used to model triphones consisting of
43 Japanese phonemes and 204 questions were prepared for context
clustering. All state output probability distributions were modeled
by using a Gaussian distribution with a diagonal covariance matrix.
The five algorithms below were compared in this experiment.

• Flat-start : HMMs were initialized by flat-start training and
trained with the EM algorithm (the EM-steps were iterated 200
times).

• DAEM : HMMs were initialized by flat-start training and
trained with the DAEM algorithm.

• Mtree : HMMs were initialized by flat-start training and trained
with the DAEM algorithm with multiple model structures.

• Label10 : HMMs were initialized with the segmental k-means
algorithm using phoneme boundary labels and trained with the
EM algorithm (the EM-steps were iterated 10 times).

• Label200 : HMMs were initialized with the segmental k-means
algorithm using phoneme boundary labels and trained with the
EM algorithm (the EM-steps were iterated 200 times).

The ML and Bayes criteria could be applied to all five algorithms,
and comparative methods were represented by combining the algo-
rithms and criteria. Mtree(Bayes) is the new proposed method and
Mtree(ML) is the previous method we proposed using the ML crite-
rion reported in [5]. DAEM methods using a single model structure
DAEM(ML) and DAEM(Bayes) were also compared with the pro-
posed method and their details have been reported [8], [7]. Prior

Table 1. Upper bound of log marginal likelihood F̄β

without phoneme boundaries with phoneme boundaries

Flat-start DAEM Mtree Label10 Label200
-77.39 -77.19 -76.39 -77.24 -77.07

distributions and model selection of the Bayesian methods are auto-
matically optimized by using the cross validation. Two tree struc-
tures were used for the approaches utilizing a single model structure
(Flat-start, DAEM, Label10, and Label200).

• ML : a model structure was selected by using the minimum de-
scription length (MDL) criterion. This structure had 4,021 leaf
nodes.

• Bayes : a model structure was selected by using the Bayesian
criterion utilizing 200-folds cross validation [9]. This structure
had 18,099 leaf nodes (CV-Bayes).

We also prepared a model structure representing monophone mod-
els for Mtree(ML) and Mtree(Bayes). The monophone structure
had 129 leaf nodes. The number of temperature parameter up-
dates in the DAEM algorithm was set to 20 (I = 20), and EM-
steps were iterated 10 times at each temperature. Temperature
parameter β was updated by using β(i) = (i/I)n, i = 0, ..., I,
where i denotes the number of iterations of temperature updates,
and n was varied to n = 2α, (α = −3, . . . , 3). Because the
EM-steps in DAEM were iterated a total of 200 times, the EM-
steps in Flat-start and Label200 were iterated 200 times. Since
it is difficult to estimate the accurate posterior probabilities of
the model structures in Mtree(ML), we heuristically assumed
that QML(m) would be updated by the following linear func-
tions: (QML(Monophone) = 0.5(1 − i/I), QML(MDL) =
0.5(1 + i/I)). Note that Mtree(Bayes) does not require pre-
determined posterior probabilities of the model structures.

4.2. Experimental results

Table 1 summarized the upper bounds of the log marginal likeli-
hood F̄β for the training data. The temperature update schedules
were adjusted to obtain the highest marginal likelihood (α = 0). The
table indicates that the marginal likelihood of Flat-start was lowest
for the Bayesian methods. This is because HMMs were initialized
by inappropriate initial posterior distributions using no phoneme
boundaries. Although DAEM also used no phoneme boundaries,
the marginal likelihood of DAEM was improved from that of Flat-
start. This indicates the DAEM algorithm effectively solved the
local maxima problem. Mtree obtained the highest marginal like-
lihood of the Bayesian methods. Moreover, Mtree could achieve a
higher marginal likelihood than the methods using label information
(Label10 and Label200). This demonstrates that the method using
multiple model structures could estimate more reliable posterior
distributions than the conventional Bayesian methods.

Figure 1 shows the phoneme accuracy for each method. The
temperature schedules were adjusted to obtain the best phoneme ac-
curacy (DAEM(ML): α = 0, Mtree(ML): α = 1, DAEM(Bayes):
α = 0, Mtree(Bayes): α = 0)．Comparing the ML-based methods
with the Bayesian methods, all Bayesian methods were more accu-
rate than those that were ML-based. This confirmed the effectiveness
of the Bayesian approach for speech recognition. Similar to the com-
parison of marginal likelihoods, Mtree achieved the highest accu-
racy of methods using no phoneme boundaries (Flat-start, DAEM
and Mtree) in both criteria. Moreover, the improvement for Mtree
was higher than that for DAEM by comparing the improvements
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from the ML criterion to the Bayesian criterion between DAEM and
Mtree methods. This means that consistently optimizing the model
parameters and model structures based on the Bayesian criterion ef-
fectively improved recognition. While Mtree(Bayes) yielded higher
accuracy than Label10(Bayes), Mtree(Bayes) could not achieve the
accuracy of Label200(Bayes). Since Label200 obtained higher ac-
curacy than Label10 in both criteria, Mtree(Bayes) might be able to
obtain higher accuracy when we adjust the number of iterations or
the schedule for temperature updates.

The posterior probabilities of the model structures in Mtree(ML)
were in proportion to the likelihoods obtained by the ML estimates
in all model structures. Since a larger model structure obtained a
higher likelihood in the ML criterion, the largest model structure
was always selected. However, this was inappropriate in most cases
due to the over-fitting problem. A heuristic approach to control the
posterior probabilities of model structures is required to avoid this
problem. However, when the number of model structures increases,
it is difficult to use such heuristics to obtain an appropriate posterior
distribution. In contrast, Mtree(Bayes) could automatically estimate
accurate posterior distributions of model structures. Figure 2 plots
the posterior distribution of model structures with all temperature
schedules during the training process. It can be seen that the poste-
rior probability of the larger model structure (CV-Bayes) gradually
increased begin dependent on the temperature parameter. to esti-
mate the posterior distributions of the model parameters and state
sequences in the early stages. Since the posterior distribution of the
model structures was automatically estimated based on the Bayesian
criterion, we could easily increase the number of model structures
without heuristics, and we intend to investigate the effectiveness of

using more than two model structures in future work.

5. CONCLUSION

This paper proposed integrating model structures based on the
Bayesian framework for speech recognition. The proposed method
not only treated state sequences and model parameters but also
model structures as latent variables. Furthermore, deterministic an-
nealing was applied to the proposed framework for relaxing the local
maxima problem. The speech recognition experiment demonstrated
the proposed method could automatically estimate reliable posterior
distributions of model parameters and an adequate posterior dis-
tribution of model structures. We intend to investigate what effect
increasing the number of model structures will have in future work
and consider optimizing the training process.
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