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ABSTRACT
In this paper we present our current work on automatic speaker
recognition using keyword-conditioned phone N -gram modeling.
We propose the use of contextual information around keywords in
modeling a speaker’s pronunciation characteristics at a phonetic
level. Our approach is to add time margins around keywords when
aligning keyword regions with keyword-specific phone events for
feature vector generation. Including such additional information by
incorporating time margins can capture idiosyncratic pronunciation
information and is shown to help our keyword-conditioned phonetic
speaker verification system achieve more than 50% (relative) perfor-
mance improvement. This leads our high-level speaker verification
system (i.e., fusion of non-conditioned and keyword-conditioned
phonetic speaker verification systems) to currently achieve the best
published result for the English 8-conversation enrollment tele-
phony task of the 2008 NIST Speaker Recognition Evaluation for
systems utilizing features not based directly on low-level acoustic
information.

Index Terms— Speaker verification, keyword-conditioned
phone N -gram modeling, contextual information, time margin

1. INTRODUCTION
For the past decade, there is increased research effort in the

speaker recognition community on modeling speaker charac-

teristics at a higher level (e.g., phoneme or word) to com-

plement state-of-the-art speaker verification systems based on

low-level acoustic features like Mel-Frequency Cepstral Co-

efficients (MFCCs). Doddington’s work [1] is an example

that showed the potential of exploiting high-level idiolectal

information using word sequences for speaker recognition.

It was shown (in [1]) that idiosyncratic speech patterns like

‘you bet’ or ‘how shall’ could be used to recognize familiar

speakers. Inspired by this work, Andrews [2] developed a

phonetic speaker verification framework to make use of idi-

olectal phone sequences by including relative frequencies for

pruned phone N -grams as input features to a speaker detector

based on calculating the log-likelihood ratio. This framework

was further extended by Campbell [3], where Support Vector

Machines (SVMs) were applied as classifiers to the phonetic

speaker verification problem and the Term-Frequency Log-

Likelihood Ratio (TFLLR) kernel was designed accordingly.

Concurrently, a number of novel ideas were proposed to im-

prove the accuracy of phonetic speaker verification, e.g., in

terms of modeling [4], phone statistics [5], and parameter es-

timation [6].

More recently, Lei and Mirghafori [7] initiated the work

on keyword conditioning for phonetic speaker verification.

They empirically showed that it could further enhance pho-

netic speaker verification performance by processing the

phone N -grams corresponding to selected words. It is noted

that this work is somewhat related to word-conditioned pho-

netic modeling performed manually by some forensic pho-

neticians [8]. Motivated by this, we investigate keyword-

conditioned phonetic speaker verification more in depth.

In this paper we propose the use of contextual informa-

tion around keywords. The contextual information can pro-

vide extra information relating to idiolectal phone usage. To

obtain such additional information, we apply time margins

before and after keywords when conditioning phone events.

This time margin framework is shown to not only improve

the overall system performance significantly but to also yield

a simplified system design compared to other approaches ex-

amined that utilize context near keywords.

The paper is structured as follows: in Section 2, we give

a brief overview of our phonetic speaker verification system

with keyword conditioning; Section 3 investigates how we

can utilize contextual information and how it can improve

system performance. In Section 4, we wrap up the paper by

summarizing our findings.

2. KEYWORD-CONDITIONED PHONETIC
SPEAKER VERIFICATION SYSTEM

Our keyword-conditioned phonetic speaker verification sys-

tem processes the phone N -grams (N = 1, 2, and 3) corre-

sponding only to selected keywords rather than handling all

phone N -grams for a given conversation side. From the ASR

transcripts (obtained using IBM’s English automatic speech

recognizer) of a background conversation side set B, we se-

lect the 50 most frequent words as our keywords. We also

choose the 2,000 most frequent phone events for each key-

word as keyword-conditioned phone N -grams. For the back-

ground data set B, we use 7,736 English telephone conver-

sation sides from the Switchboard-II corpus and the 2004/06
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NIST Speaker Recognition Evaluation (SRE) data1. Given a

conversation side, we concatenate the relative frequencies of

keyword-conditioned phone N -grams across the keywords to

generate a phone feature vector of 100,000 dimensions. The

keyword-conditioned TFLLR kernel for SVM training and

classification, which is adapted from [3], can thus be written

as follows:

K(X,Y ) =

W∑

w=1

M∑

i=1

P (dwi |X)√
P (dwi |B)

P (dwi |Y )√
P (dwi |B)

, (1)

where M is the number of the most frequent phone events per

keyword, empirically chosen to be 2,000, W is the number of

keywords (i.e., 50 in our case), dwi is the ith phone event of

the keyword-conditioned phone N -grams conditioned by the

wth keyword, and P (dwi |·) is the relative frequency of dwi in

a given conversation side, i.e., P (dwi |·) = #(dw
i |·)

∑W
u=1

∑M
j=1 #(du

j |·)
,

where # is the soft count of dwi in the conversation side. X
and Y are enrollment and test conversation sides. To obtain

the soft count of each phone N -gram of interest, as calcu-

lated in [5], we utilize phone confusion networks, which are

generated by using IBM’s English phone recognizer and the

SRILM toolkit [10]. An SVM classifier is implemented using

the LIBSVM package [11] with a margin and classification

error tradeoff of c = 1.

To obtain more reliable phone N -gram statistics for

P (dwi |X) and P (dwi |Y ), we apply the Maximum A Pos-

teriori (MAP) adaptation technique [6, 12] and use these

statistics in Eq. (1). We can view P (dwi |·) as a Maximum

Likelihood (ML) estimate for dwi (whose statistics follow a

multinomial distribution [6]), i.e., P (dwi |·) = PML(d
w
i |·). As-

suming a Dirichlet distribution as a conjugate prior, P (dwi |·)
can be estimated in a MAP sense:

PMAP (d
w
i |·) =

#(dwi |·) + νwi − 1
∑W

u=1

∑M
j=1

[
#(duj |·) + νuj − 1

] , (2)

where νwi is the hyperparameter of the Dirichlet distribution

corresponding to dwi . The τ -initialization scheme [13] is used

to estimate νwi ,

νwi − 1 = τ ·D ·W · P (dwi |B), (3)

where D is the dimension of a keyword-conditioned phone

feature vector (i.e., 100,000) and τ is empirically chosen to

be 0.0005.

3. CAPTURING CONTEXTUAL INFORMATION
AROUND KEYWORDS

The basic idea of conditioning phone events by keyword

is to compare pronunciation differences for a fixed set of

words because such differences can be related to speaker

1This data set is also used for both Nuisance Attribute Projection (NAP)

[9] and SVM training (as negative examples).

Fig. 1. Illustration of how to obtain contextual phonetic in-

formation around keywords by applying time margins to key-

word boundaries.

identity. In spontaneous conversations, it is also idiosyn-

cratic which words are spoken with certain keywords. For

example, ‘YOU’ is followed by ‘KNOW’ to make a popular

filler in American English conversations. Another example

is ‘I’, which can be used with ‘MEAN’ very often for some

speakers and may be used with ‘KNOW’ or ‘JUST’ for other

speakers. Thus, it would be appropriate to consider contex-

tual information around keywords as well when conditioning

phone events for phonetic speaker verification. Fig. 1 il-

lustrates how we can obtain contextual phonetic information

around keywords. Instead of selecting the phone N -grams

within the time boundaries of keywords, we apply time mar-
gins before and after keywords so that statistics for additional

phone N -grams surrounding keywords can also be included

in keyword-conditioned phone feature vectors.

To indicate the utility of incorporating additional phonetic

information from time margins, we ran a task from the NIST

SRE ’08 consisting of 8 English telephone conversation sides

for enrollment and one English telephone conversation side

as a testing example. We call this task 8conv-short3-Eng-
Tel. The Equal Error Rate (EER) and the minimum Detection

Cost Function (minDCF)2 are used to measure performance.

The claim that including the time margin can help the sys-

tem capture more speaker-relevant phonetic information per

keyword and result in better speaker verification is empiri-

cally supported by Fig. 2. This figure shows how the per-

formance of the keyword-conditioned phonetic speaker veri-

fication system changes as we change the time margin. From

the figure we observe that the optimal performance is when

a 0.3 second time margin is applied. The time margin of 0.3

seconds can be interpreted as being comparable to the aver-

age length of one English word based on the word duration

statistics from the ASR transcripts of our background data set

B. This means that by including a 0.3 second time margin we

could capture the phone N -gram statistics approximately cor-

responding to one more word on either side of the keywords.

The relative improvements of 57% in EER (from 11.2% to

4.8%) and 51.1% in minDCF× 103 (from 54.6 down to 26.7)

coming from the time margin of 0.3 seconds compared to the

performance without any time margin shows the importance

of applying time margins when generating phone feature vec-

2For further information regarding the evaluation metrics, please refer to

[14].
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Fig. 2. Performance of the keyword-conditioned phonetic

speaker verification system (with 50 keywords used) along

with the time margins applied before and after the keywords.

The task is 8conv-short3-Eng-Tel in the NIST SRE ’08.

tors in the keyword-conditioned phonetic speaker verification

system.

Applying a time margin around keywords can provide the

system with further opportunity to capture idiolectal word

and phone usage. Table 1 lists the most frequent phone tri-

grams for 10 chosen keywords (among 50) in both of the

cases with and without the time margin of 0.3 seconds be-

ing applied to keyword-conditioned phone feature vector gen-

eration. Without the time margin, the most frequent phone

trigrams obtained by keyword conditioning are nothing but

the phone events corresponding to the given keywords. (In

the middle column, we can observe that most of the trigrams

listed represent the phone sequence events matching with the

corresponding keywords in the pronunciation.) Utilizing the

time margin, however, changes the most frequent keyword-

conditioned phone trigrams for some words, e.g., ‘I’, ‘YOU’,

‘OF’ and ‘IS’. For these words, after the time margin is ap-

plied, the most frequent phone trigrams are changed to ‘M-IY-

N’, ‘Y-UW-N’, ‘L-AA-T’, and ‘T-IH-Z’, which is not surpris-

ing because it is well known that those words are mostly used

in a characteristic form in spontaneous English conversations

such as ‘I mean...’, ‘you know’, ‘a lot of’, and ‘it is...’. By

capturing additional content from a given conversation side,

our keyword-conditioned phonetic speaker verification sys-

tem with time margins can expand unigram keywords to cap-

ture information from bigram or even trigram keywords con-

ceptually. This results in a huge boost to system performance,

as was shown in Fig. 2.

Our time margin framework is compared in Table 2 with

systems using bigram or trigram keywords without time mar-

gins. The main issue in using multi-gram keywords in a direct

way is sparsity. Since they do not occur very often like un-

Table 1. List of the most frequent phone trigrams for 10 cho-

sen keywords in the cases with and without the time margin

of 0.3 seconds. X: silence.

Keyword Most Frequent Phone Trigram

(Rank) w/o Time Margin w/ Time Margin

I (1) X-X-AY M-IY-N

YOU (2) X-Y-UW Y-UW-N

KNOW (7) N-OW-OW Y-UW-N

LIKE (8) L-AY-K L-AY-K

IT (9) IH-T-X IH-T-IH

UM (13) AH-M-X AH-M-X

OF (15) AH-V-X L-AA-T

IS (20) IH-Z-S T-IH-Z

ALL (46) X-AO-L AO-L-DH

GO (49) G-OW-OW G-OW-T

Table 2. Comparison between the time margin framework

(0.3 second time margin) and systems directly using bigram

or trigram keywords without time margins.

Proposed Bigram Trigram

minDCF (×103) 26.7 83.9 99.2

igram keywords in conversation sides, keyword-conditioned

phone feature vectors in the systems with bigram or trigram

keywords become sparse. Although smoothing helps com-

pensate phone relative frequency statistics to some degree in

the experiment, the two systems do not have the performance

comparable with the proposed framework with the time mar-

gin of 0.3 seconds. While we can try to mix unigram, bigram,

and trigram words manually to optimize the system perfor-

mance, a related issue is how to optimally select such a mix.

In contrast, the time margin framework utilizes information

from multiple words without the severe sparsity issues.

Table 3 compares the time margin framework with sys-

tems explicitly assigning neighboring words around key-

words. It is shown from the table that the time margin frame-

work seems a better approach than its counterparts with

regard to selection of contextual information. Although its

performance in minDCF is not dramatically better than those

for 1 or 2 more words used around keywords as contextual

information, it can provide a noticeable benefit in terms of

fusion3 with the acoustic baseline. Its relative improvement

is 10% while the improvement of the others is limited to

less than 7%. One of reasons for this discrepancy is that the

system utilizing the fixed number of words to capture con-

textual information around keywords would be susceptible

to the case where there is a long pause or silence between

a given keyword and its most adjacent word on either side.

This could cause the system to obtain statistics that may be

3For optimized fusion weight selection, we utilize a held out data set of

1,600 conversation sides from the Switchboard-II corpus, which is separate

from the data used for the background data set B.
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Table 3. Comparison (minDCF ×103) between our proposed

framework with the time margin of 0.3 seconds and systems

using more words around keywords. For fusion (with opti-

mized weighting), an acoustic baseline using MFCCs is used.

The acoustic system has NAP and ZT score normalization ap-

plied. The task is 8conv-short3-Eng-Tel in the NIST SRE ’08.

System Acoustic Time Margin
Word Margin

1 2 3

Individual 5.7 26.7 27.7 27.9 30.4

Fused - 5.1 5.3 5.4 5.6

Table 4. Comparison of individual and fused systems.

ASV: Acoustic speaker verification using MFCCs, PSV:

Non-conditioned phonetic speaker verification, and KW-PSV:

Keyword-conditioned PSV.

System minDCF (×103)

PSV 23.6

KW-PSV 26.7

PSV + KW-PSV 20.4

ASV (ZT-Norm Applied) 5.7

ASV + PSV 5.4

ASV + KW-PSV 5.1

ASV + PSV + KW-PSV 5.1

less relevant. From Tables 2 and 3 we can claim that our

approach of adding time margins to keyword boundaries in

phone feature vector extraction for phonetic speaker verifica-

tion provides a simplified system design as well as captures

more speaker-relevant information.

Table 4 presents a comparison of the time-margin frame-

work and the non-conditioned phonetic system in terms of

score fusion with the acoustic baseline. Note that the com-

bined performance (20.4) of the two phonetic systems is

the best published result on 8conv-short3-Eng-Tel in the

NIST SRE ’08 among systems using high-level information

other than acoustic features. We observe that the keyword-

conditioned phonetic system (with the time margin of 0.3 sec-

onds) provides a 10% (relative) improvement to the acoustic

baseline through fusion, which is almost doubled compared

to the 5.3% (relative) improvement from the non-conditioned

system.

4. CONCLUSIONS
In this paper, we proposed the use of contextual informa-

tion around keywords for phone feature vector generation in

the framework of phonetic speaker verification. By apply-

ing a time margin of 0.3 seconds before and after 50 unigram

keywords when computing the relative frequencies of phone

events of interest, we achieved an improvement of 51.1% (rel-

ative) in minDCF. We also obtained a fusion benefit from

the proposed approach when we combined it with our MFCC

acoustic baseline. This study not only highlighted the impor-

tance of proper constraints in phone feature vector generation

but also underscored the importance of incorporating context

around keywords.
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