
EFFICIENT APPROXIMATED I-VECTOR EXTRACTION 

Hagai Aronowitz, Oren Barkan 

IBM Research – Haifa, Israel 
hagaia@il.ibm.com, orenba@il.ibm.com 

ABSTRACT 

I-vectors are currently widely used by state-of-the-art speech 
processing systems for tasks such as speaker verification and 
language identification. A shortcoming of i-vector-based systems is 
that the i-vector extraction process is computationally expensive. 
In this paper we propose an efficient method to extract i-vectors 
approximately. The method normalizes the GMM counts to be 
similar across sessions. We validate our method empirically for the 
speaker verification task on five different datasets, both text 
independent and text dependent. A significant speedup was 
obtained with a very small degradation in accuracy compared to 
the standard exact method. 

Index Terms— efficient speaker recognition, i-vectors, 
approximated i-vectors extraction 

1. INTRODUCTION 

Recently, i-vector-based systems have become popular for 
speech processing systems such as speaker recognition [1] and 
language identification [2]. I-vectors provide a way to map audio 
sessions into a low-dimensional feature vector while retaining most 
of the relevant information. 

The computational resources needed for estimating i-vectors in 
recognition-time are not negligible and are significantly larger than 
the corresponding resources required for the Nuisance Attribute 
Projection (NAP) algorithm which has been shown to provide 
accurate results [3] with a relatively low computation complexity.  
Joint Factor Analysis (JFA) [4] which is another state-of-the-art 
method for speaker recognition is originally more computationally 
complex than the i-vector approach. However, lately [5] a method 
named JFAlight was introduced and has managed to significantly 
reduce the time complexity in recognition-time with the cost of a 
very small degradation in accuracy. Therefore, the i-vector 
approach is no longer computationally efficient compared to JFA. 

In [6] two novel simplifications were introduced for i-vector 
extraction. Both simplifications managed to speed up runtime by 
factors of 10-25 but in the expense of a significant degradation in 
accuracy (at least 17% in EER and 16% in DCFnew). 

In this paper we propose to improve on the works reported in 
[5] and [6]. Using our method we manage to maintain the speedup 
factor obtained in [6] while keeping the accuracy with only a small 
degradation. 

This paper is organized as follows: Section 2 reviews related 
background for i-vector extraction. Section 3 introduces the 
proposed method for i-vector extraction. Section 4 describes the 
experimental setup. Section 5 reports the results. Finally, Section 6 
concludes the paper. 

2. I-VECTOR BASED SPEECH PROCESSING 

In the i-vector framework, a session is first represented by its zero 
and first order statistics under a GMM-UBM (Gaussian mixture 
model - universal background model) framework. The basic 
assumption is that a speaker and channel dependent supervector of 
stacked GMM means denoted by s can be modeled as:  

wms T++++====                                   (1) 

where m is the UBM supervector, T is a low-rank matrix of bases 
spanning a subspace covering most of the variability in the 
supervector space, and w is an M-dimensional vector having a 
standard normal distribution. For each session, the i-vector is the 
MAP point estimate of the latent variable w. 

The UBM and the hyper-parameter T are estimated from a 
development data in a process described in [7]. We define the 
following terms: C is the GMM order, K is the feature vector size, 

c is the covariance matrix for Gaussian c,  is a CK × CK 
diagonal matrix, whose diagonal blocks are c.  

For the zero and first order statistics we define the following 
definitions: Nc is the data count for Gaussian c for a particular 
session, N is a CK × CK diagonal matrix, whose diagonal blocks 
are NcIK (IK is K × K identity matrix), and F is a CK × 1 vector, 
obtained by concatenating the first order GMM statistics for a 
particular session.  

2.1. Exact i-vector extraction 

For a given session X with zero order statistics N and first order 
statistics F , the MAP estimate for w is given by [1] 

Fw t
MAP

11 −−−−−−−− ΣΣΣΣ==== TL                               (2) 

with L  defined as 

  TTIL t N1−−−−ΣΣΣΣ++++====                               (3) 

The computational complexity of calculating the wMAP is O(CKM 
+ CM2 + M3) and is dominated by the complexity of computing 
the value of  L which is O(CM2). 

2.2. Efficient approximated i-vector extraction: Related 
work 

In [6], two simplification methods were proposed for speeding up 
i-vector extraction. The most successful method named i-vector 
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extractor orthogonalization was able to obtain a speedup factor of 
25 with the cost of a 17% relative degradation in EER and a 16% 
relative degradation in DCF. In this paper we do not use this 
method. 

The other method named constant GMM component alignment
takes the following approximation: 
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                          (4) 

with 
totN defined as the total data count (length) of session X, W is 

defined as a CK × CK diagonal matrix, and contains the ML 
estimates for the GMM weights (zero order statistics divided by the 
total length). W is an estimate of the expected value of W over the 

entire dataset. In [6] W is obtained by taking the UBM weights. In 

our implementation we estimate W by averaging W over the dev 
set. The outcome of using Eq. (4) reduces the time complexity of 
estimating L from O(CM2) to O(M2). The time complexity of the 
whole1 extraction process reduces to O(CKM+M3) which is 
reported to give a speedup factor of 14 with the cost of a 24% 
relative degradation in EER and a 29% relative degradation in 
DCF. We denote this approximation method with CGCAw . 

In [5] a method quite similar to constant GMM component 
alignment named JFAlight was introduced for the sake of efficient 
approximated JFA factors estimation. The approximation taken 
was: 

TTIL t N1−−−−ΣΣΣΣ++++≈≈≈≈                                    (5) 

where N  is an estimate of the expected value of N over the entire 
dataset and was in practice estimated by averaging N over the dev 
set. Note that the approximation in Eq. (5) is less accurate than the 
approximation in Eq. (4) but enables the computation and 
inversion of L offline, which in the i-vector framework can reduce 
the recognition-time computation to 

FwJFAlight ΑΑΑΑ====                                      (6) 

where ΑΑΑΑ is a  M × CK matrix defined as: 

11 −−−−−−−− ΣΣΣΣ====ΑΑΑΑ tTL                                       (7) 

with L taken from the approximation in Eq.  (5). The outcome of 
using this method for JFA resulted in a speedup factor of 100 with 
a relative degradation of up to 5% in accuracy (depending on the 
dataset). In the context of i-vector extraction, the time complexity 
of the whole extraction process reduces to O(CKM) . 

2.3. Speaker recognition in i-vector space 

                                                
1 Excluding the calculation of GMM statistics 

Extracted i-vectors (400 dimensioal) are length-normalized [8] in 
order to become more Gaussian. We then follow the approach 
described in [9]. We apply LDA (Linear Discriminant Analysis) to 
reduce the dimensionality to 250, and then use WCCN (within 
class covariance normalization). We use cosine-based similarity 
scoring and normalize using ZT-norm which we found to be 
slightly superior to s-norm. 

3. PROPOSED METHOD 

Our starting point is the two methods described in subsection 2.2. 
As we report in section 5 (and as reported in [6]), these methods 
cause a significant degradation in accuracy. We propose several 
modifications to these methods aimed at improving the obtained 
accuracy.  

We begin by rewriting the MAP estimate for the i-vector w as 
follows: 

(((( )))) NsNw t
MAP

111 −−−−−−−−−−−− ΣΣΣΣΣΣΣΣ++++==== TTTI t                     (8) 

with s defined as the maximum likelihood (ML) estimate for the 

GMM supervector associated with the session: FNs 1−−−−==== . The 
formulation in Eq. (8) implies that if the zero order statistics are 
approximated in the computation of L , they should be 
approximated in the same manner in the term Ns . Therefore, we 
propose to modify the constant GMM component alignment

method described in Eq. (4) to compute 1w

(((( )))) FWWWNw t
tot

1111
1

−−−−−−−−−−−−−−−− ΣΣΣΣΣΣΣΣ++++==== TTTI t            (9) 

and we further modify the approximation described in Eqs. (5-7) to 
compute 2w   

FNw 1
22

−−−−ΑΑΑΑ====                                     (10) 

with (((( )))) NN t 111
2

−−−−−−−−−−−− ΣΣΣΣΣΣΣΣ++++====ΑΑΑΑ TTTI t

3.1. Gender dependency  

In our experiments we have observed that it is best to compute the 
average Gaussian occupancy matrix N  (or the average Gaussian 

weights matrix W ) separately for males and females. In 
recognition time, we do not assume that the gender is known a 
priori. Instead for a given session we automatically select N  (or 

W ) by comparing the session dependent statistics ( N  or W ) to 
the corresponding gender dependent statistics and choosing the 
most similar. The distance measure we used was the Euclidean 
distance. 

3.2. Task dependency 

In our experiments we have observed that it is important to 
estimate the average statistics ( N or W ) from a dataset that 
matches the characteristics of the test data. Otherwise, we have 
observed a significant degradation in accuracy. 
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3.3. Score normalization  

The approximation methods we investigate in this paper are 
expected to be applied in recognition time. In most of our 
experiments we assume that the enrollment sessions are processed 
without approximations. In order to avoid a mismatch in the 
normalization sessions, we apply the approximations on the Z-
norm sessions (but not on the T-norm sessions). 

3.4. LDA and WCCN retraining  

The results we report are with LDA and WCCN trained on i-
vectors extracted with the exact method. However, we observed 
that retraining of LDA and WCCN on approximated i-vectors 
reduces accuracy degradation. We do not choose to use this 
approach in general because training LDA and WCCN requires 
large amounts of data which we don't have when we are working 
on non-NIST tasks and according to subsection 3.2, estimating the 
average statistics ( N or W ) from matched development sets is 
essential. 

3.5. Soft approximation 

In order to cope with a possible degradation in accuracy we 
propose a flexible tradeoff between accuracy and speed. We 
exemplify our method on the JFAlightw  approximation method (Eq. 

5-7). We propose the following modified approximation: 
  

FLw t
softJFAlightSoft

11 −−−−−−−− ΣΣΣΣ==== T                             (11) 

(((( ))))(((( ))))
ΔΔΔΔ∈∈∈∈

−−−−−−−− ΣΣΣΣ−−−−++++ΣΣΣΣ++++≈≈≈≈
c

cc
t

soft TTTTIL 11 t
cc NNN       (12) 

where
cT is a K×M sub-matrix of T corresponding to the c mixture 

component such that (((( ))))tt
C

t TT ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==== 1T , and  is a set of Gaussian 

components for which we use the exact calculation instead of the 
approximation. Note that if  is empty than Eq. (11) is equal 
to JFAlightw , and if  consists of  all the Gaussian components, Eq. 

(11) reduces to the exact method. We can therefore set through  a 
trade-off between accuracy and speed. The time complexity of 
computing 

JFAlightSoftw  is O(CKM+| |M2+ M3). We define  to be 

session dependent by computing for each Gaussian component the 
session dependent expected approximation error Ec and selecting 
the top R percentile.  

ccc TTE 1−−−−ΣΣΣΣ−−−−≈≈≈≈ t
cc NN                            (13) 

4. EXPERIMENTAL SETUP 

4.1. Datasets 

We trained the UBM and matrix T on 12,711 sessions from 
Switchboard-II, NIST 2004 speaker recognition evaluation (SRE) 

and NIST-2006-SRE. We used a subset of these sessions for ZT-
score normalization for our NIST 2008 experiments. 

We ran experiments on five datasets. The first dataset is a 
subset of the NIST-2008-SRE (the short2-short3 condition). We 
limited our experiments on telephone trials only. The male 
experiments consist of 5,838 target trials and 435,142 impostor 
trials. The female experiments consist of 11,312 target trials and 
1,231,732 impostor trials. 

In order to assess the accuracy of the approximation methods 
on short sessions we conducted experiments on four other datasets 
which were collected by the Wells Fargo Bank within the 
framework of a proof of technology (POT) [10]. The datasets 
consist of 750 recorded WF employees. Each dataset is partitioned 
into a development dataset (200 speakers) and an evaluation 
dataset (550 speakers). Each speaker has 2 sessions using a 
landline phone and 2 sessions using a cellular phone. The data 
collection was accomplished over a period of 4 weeks.  

Four different authentication conditions were defined for the 
WF POT. In the first authentication condition named global, a 
common text is used for both enrollment and verification. In the 
second condition named speaker a user (speaker) dependent 
password (assumed to be known to the imposters) is used for both 
enrollment and verification. The third condition named prompted
is a condition in which during the verification stage the user is 
instructed to speak a prompted text. Enrollment for the prompted
condition uses speech corresponding to text different than the 
prompted verification text. Finally, in the text independent
condition the user is enrolled by reading a fixed text (shared 
among all speakers) and verified by saying utterances such as 
user's full name, user's work phone number, user's zip code, etc. 

 The WF POT experiments consist of approximately 6,500 
target trials and 75,000 impostor trials per authentication 
condition. About 75% of the target trials are channel mismatched 
(landline vs. cellular) and 25% of the target trials are channel 
matched. The WF POT development data (800 sessions) is used 
for ZT-score normalization. 

4.2 Front-end 

The front-end is based on Mel-frequency cepstral coefficients 
(MFCC). An energy based voice activity detector is used to locate 
and remove non-speech frames. The final feature set consists of 12 
cepstral coefficients augmented by 12 delta and 12 delta-delta 
cepstral coefficients extracted every 10ms using a 32ms window. 
Feature warping is applied with a 300 frame window. We use a 
GMM order of 1024.  

5. RESULTS 

Table 1 presents a comparison of the exact i-vector extraction 
method to the CGCAw ,

JFAlightw , 1w and 2w approximation methods 

on the NIST-2008 dataset. Error rates for males and females are 

averaged. For CGCAw  and 
JFAlightw  we observe a significant 

degradation in accuracy of ~20% in EER and 12% in minDCF.  
For the proposed 1w and 2w methods we see no significant 

degradation in accuracy. We choose to use 2w which obtained the 

best performance for the rest of our experiments. 
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Table 1. A comparison of the proposed approximation 
methods on the NIST-2008 dataset. 

Dataset EER 
 in (%) 

minDCF 
(× 10^5) 

Runtime 
(in sec) 

Speedup 
factor 

Exact         1.80 848 0.76 - 

CGCAw    [6]  2.12 949 0.07 112

JFAlightw  [5] 2.16 941 0.03 25 

1w             1.78 873 0.07 11 

2w             1.79 874 0.03 25 

Table 2 presents results for the 2w  approximation method 

compared to exact i-vector extraction for the four WF conditions. 
We can see that for the global, speaker and prompted conditions 
we observe no significant degradation due to using the 2w
approximation. However, for the TI condition we do observe a 
significant degradation of 10%. 

Table 2. A comparison of the 2w  approximation method 

to the exact method for the WF datasets. 

Dataset Exact 
EER 

 in (%) 

w2
EER 

 in (%) 
WF global         3.04 3.07  
WF speaker 3.60 3.65  
WF prompted 7.18 7.15  
WF TI        2.53  2.79  

The soft approximation method introduced in subsection 3.5 
was evaluated on the WF TI condition. The results are presented in 
Table 3. A reasonable tradeoff between accuracy and speed can be 
obtained using R=5% which gives a relative degradation of 2.8% 
with a speedup factor of 5. 

Table 3. Soft approximation for the WF TI dataset. 

Dataset EER 
 in (%) 

Runtime 
(in sec) 

Speedup 
factor 

Exact 2.53 0.76  - 
w2 2.79 0.03 25 
w2 , R=1% 2.73 0.09 8 
w2 , R=2% 2.67 0.11 7 
w2 , R=5% 2.60 0.15 5 
w2 , R=10% 2.58 0.26 3 

6. CONCLUSIONS 

In this paper we have proposed a method for efficient 
approximated extraction of i-vectors. The method manages to 
speed up i-vector extraction (excluding sufficient statistics 
calculation which is relatively fast) by a factor of 25. Speedup is 
obtained by normalizing the GMM counts for each session to be 

                                                
2 We obtain a different speedup factor that reported in [6] because 
we use a different GMM order and a different feature dimension 
are different than in [6]

similar across sessions of the same gender and the same task 
characteristics. This normalization enables doing most of the 
calculations offline.  

For NIST 2008, we observed no degradation in EER using the 
proposed method, and observed a very small degradation in 
minDCF. These accurate results are explained by the fact that 
NIST sessions are relatively long therefore it is not essential to use 
accurate values of Gaussian components in the MAP estimation 
process (Eq. 8). 

The WF POT datasets contain significantly shorter sessions. 
Fortunately, for the global, speaker and prompted conditions, we 
observed only a small degradation in accuracy (if any). For the WF 
TI condition we did observe a significant degradation in EER 
(10%).  We think that the degradation is due to the combination of 
the shortness of the test sessions (17 sec in average) and the severe 
textual content and length mismatches between the development 
data used to estimate the average Gaussian counts and the test data.  
We managed to reduce most of this degradation using the soft 
approximation approach in the cost of a reduced speedup factor.  
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