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ABSTRACT

In this work, a speaker verification (SV) method is proposed employ-
ing the sparse representation of GMM mean shifted supervectors
over learned and discriminatively learned dictionaries. This work
is motivated by recently proposed speaker verification methods em-
ploying the sparse representation classification (SRC) over exemplar
dictionaries created from either GMM mean shifted supervectors or
i-vectors. The proposed approach with discriminatively learned dic-
tionary results in an equal error rate of 1.53 % which is found to be
better than those of similar complexity SV systems developed using
the i-vector based approach and the exemplar based SRC approaches
with session/channel variability compensation on NIST 2003 SRE
dataset.
Index Terms: speaker verification, learned dictionary, sparse repre-
sentation, GMM mean supervector.

1. INTRODUCTION

Speaker verification (SV) task refers to the authentication of persons
using their voice samples. The current state-of-the-art SV systems
are based on the total variability i-vectors derived from the GMM
mean supervectors for modeling speakers [1]. In last few years,
there is a lot of interest generated about sparse representation and
compressive sensing which provide a new directions to signal pro-
cessing research. Recently the discriminative abilities of the sparse
representation have also been exploited in various areas of the pat-
tern recognition such as face recognition, texture classification, and
speaker recognition. Following the work in [2] on face recognition
by the sparse representation classification (SRC) with an exemplar
dictionary, a similar approach for speaker identification task with an
exemplar dictionary created using GMMmean supervectors was ex-
plored in [3]. In that work, the exemplar dictionary was created by
arranging the supervectors corresponding to all speakers in training
data as columns. The test data supervector was represented as the
sparse linear combination of the atoms (columns) of the dictionary.
The test supervector was assigned to the class associated to the atom
having the highest non zero coefficient in the sparse vector.

Later the SRC with exemplar dictionary approach was extended
to the speaker verification task in [4]. In that work, the dictionary
for verifying a claim was constructed by arranging the GMM mean
supervectors of the claimed speaker utterance and that of a set of im-
poster speaker utterances. The GMM mean supervector of the test
utterance is represented as a sparse linear combination of the atoms
of the dictionary. For verification purpose, the coefficient of the
sparse vector corresponding to the target speaker vector is compared
to that of the imposter speaker vectors with a suitable metric. In [5],
the similar idea was explored with exemplar dictionary created using

the total variability i-vectors. These SRC based approaches report-
edly found to give competitive but lower performances in compari-
son to the existing high performing i-vector based approach. In the
context of sparse representation, it is well known fact that the learned
dictionaries not only outperform the exemplar ones but also are more
data-independent [6]. Motivated by these facts, in this work, we pro-
pose a novel speaker verification approach employing sparse repre-
sentation over learned and discriminatively learned dictionaries. The
NIST 2003 SRE dataset is used for evaluating the performance.

The paper is organized as follows: In Section 2, the proposed
SV system and the dictionary leaning algorithms are described. The
different contrast SV systems and some session/channel variability
compensation methods that are used in this work are briefly de-
scribed in Section 3 and Section 4, respectively. Section 5 provides
the details about database and experimental setup. The results are
discussed in Section 6 and conclusions are given in Section 7.

2. PROPOSED SV SYSTEM USING SPARSE
REPRESENTATION OVER LEARNED DICTIONARIES

We present a novel speaker verification system employing sparse
representation over learned dictionaries and is referred to as SR-SV
system in this work. In [7], the use of GMM mean shifted super-
vectors was explored for the SRC with exemplar dictionary on face
video verification task. The mean shifting of the GMM supervectors
was reported to enhance incoherence among atoms of the exemplar
dictionary. Motivated by that we also use the GMM mean shifted
supervectors for modeling. The GMM mean shifted supervector, y
for a speaker utterance is defined as,

y = s−m (1)

where, s is the GMM mean supervector for the speaker utterance
obtained from MAP adapted GMM-UBM and m is the speaker-
independent UBM mean supervector. We model y using the sparse
representation with a learned dictionary D as,

y = Dx (2)

The dictionary D is of M × N size where M corresponds to the
dimension of supervector and N is the number of atoms. D can be
learned on a suitable development data using algorithms described
later. x is the sparse vector and is estimated using orthogonal match-
ing pursuit (OMP) algorithm which minimizes l0-norm with a con-
straint on the representation error as,

x̂ = argmin
x

‖x‖0 such that, ‖y −Dx‖22 < ε (3)

The sparse vector x̂ obtained can be considered as a compact repre-
sentation of the speaker.
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In case of learned dictionaries, the classification cannot be done
simply by comparing the coefficients of the sparse representation of
the test utterance as done in case of the exemplar dictionaries since
the learned dictionaries do not have class labels associated with their
atoms. To overcome this problem, we have devised a scoring method
which compares the sparse representation of the test utterance with
that of the claimed speaker’s training utterance. We have used the
cosine kernel metric for finding the similarity between the claimed
and the test sparse vectors and that is compared with a threshold for
the verification purpose as,

< x̂clm. x̂tst >

‖x̂clm‖ ‖x̂tst‖
≶ γ (Threshold) (4)

where x̂clm and x̂tst represent the sparse representations of the
claimed and the test speakers, respectively.

In the following subsections, we describe two existing dictionary
learning algorithms that are used for learning the dictionaries for the
proposed SR-SV system.

2.1. The KSVD algorithm

The KSVD [6] is one of the most widely used algorithms for learn-
ing redundant dictionaries for sparse representations. It is a gener-
alization of the well known K-means clustering algorithm. KSVD
algorithm constructs a dictionary of K atoms that leads to the best
possible representation for each member of the training examples
with a minimum sparsity constraint. The dictionary learning prob-
lem is represented as,

min
D,X

{
‖Y −DX‖22

}
subject to ‖xi‖0 ≤ T0 ∀i (5)

where, Y is the set of dictionary training vectors, D is the dictio-
nary,X is the set of sparse vectors corresponding to Y and T0 is the
constraint on sparsity. The learning is an iterative process and each
iteration has two stages: the sparse coding stage and the dictionary
update stage. In the sparse coding stage, any of the pursuit methods
such as OMP can be used for finding the sparse representation of the
given set of examples based on the current dictionary. The update
of the dictionary atoms is done jointly with an update of the sparse
representation coefficients related to it, thus resulting in accelerated
convergence.

2.2. SKSVD algorithm

The SKSVD [8] is a supervised version of the KSVD algorithm for
learning discriminative dictionary. It uses class supervised simulta-
neous OMP (CSSOMP) in the sparse coding stage of the dictionary
learning process which differs from OMP in two aspects: (i) CS-
SOMP uses the same set of atoms from the dictionary to represent all
examples from a given class and so attempts to extract the common
internal structure of that class whereas OMP treats each example in-
dependently (ii) In addition to the original reconstruction criterion
of minimum squared error used in OMP, CSSOMP also uses a dis-
crimination measure which increases the separability among classes.
The sparse discriminant dictionary learning problem is represented
as,

max
D,X

{
θ.J

({{
x

j
i

}nj

i=1

}c

j=1

)
−

c∑
j=1

nj∑
i=1

∥∥∥yj
i −Dx

j
i

∥∥∥2

2

}

subject to
∥∥∥xj

i

∥∥∥
0
≤ T0, ∀i, j (6)

The function J(.) represents the discriminant measure defined as
:= trace(B)

trace(W )
whereB andW are the between-class and the within-

class covariance matrices of the learning data, respectively. D is the
learned dictionary, yj

i is ith example vector of jth class from a set
of dictionary training data having c classes with nj , 1 ≤ j ≤ c ex-
amples per class. xj

i is the sparse coefficient vector corresponding to
y
j
i . θ is a parameter controlling the trade-off between discriminative

and re-constructive terms in the learning criterion.

3. CONTRAST SPEAKER VERIFICATION SYSTEMS

In this work, for comparison purpose two different kinds of contrast
SV systems are developed, one based on the cosine kernel scoring
of either the GMM mean shifted supervectors or the i-vectors while
the other based on the SRC with exemplar dictionaries created using
either the GMM mean shifted supervectors or the i-vectors.

3.1. Total variability i-vector based SV system

The total variability i-vector based speaker verification system is the
state-of-the-art method for speaker verification. In this, the GMM
mean shifted supervector y for a speaker utterance is projected to a
lower dimensional subspace as,

y = Tw (7)

where T is the low rank matrix referred to as ‘total variability ma-
trix’ and the projection w is referred to as ‘i-vector’. The total vari-
ability matrix T is learned on a large development data using prob-
abilistic PCA method. The i-vector for a given GMM mean shifted
supervector is found by using the pseudo-inverse of the matrix T .
Speaker verification is done by comparing the i-vectors correspond-
ing to the test utterance and the claimed speaker’s training utterance
using the cosine kernel metric [1].

We have also implemented an SV system using the GMM mean
shifted supervectors with cosine kernel scoring similar to the i-vector
approach for better contrast purpose.

3.2. SRC with exemplar dictionary based SV system

Recently, two speaker verification systems employing SRC over ex-
emplar dictionary using GMM mean supervectors and i-vectors are
proposed in [4] and [5], respectively. In both methods, the exemplar
dictionary is created for each of the claims by arranging the vectors
representing the claimed speaker and a set of background speakers
as,

Dclm = [yclm, ybg1 ,ybg2 , . . . ,ybgM ] (8)

where yclm denotes the appropriate vector representation of the
claimed speaker’s training utterance and {ybgi}

M
i=1 denote those

of M background speakers’ utterances taken from the development
data. The test vector ytst is represented by a sparse vector xtst over
the dictionary Dclm as ytst = Dclmxtst. For a given ytst and
Dclm the estimate of xtst is obtained as,

ˆxtst = argmin
xtst

‖xtst‖0 such that, ‖ytst −Dclmxtst‖
2
2 < ε (9)

The score for verification is found using the l1-norm ratio metric
given by ‖δ1( ˆxtst)‖1/‖ ˆxtst‖1 where, δ1( ˆxtst) is a vector whose
nonzero entries are the only entries in the first element of ˆxtst. In
our implementation we have used GMM mean shifted supervectors
instead of GMM mean supervectors for being consistent with other
methods.
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4. SESSION/CHANNEL VARIABILITY COMPENSATION

The session/channel variability compensation methods form an inte-
gral part of all current SV systems. In the following, we describe in
brief the different session/channel variability compensation methods
that are applied to different SV systems considered in this work.

4.1. Joint factor analysis

In joint factor analysis (JFA) [9], the GMMmean shifted supervector
y for a speaker is represented as the sum of three factors as,

y = Uu+ V v +Dd (10)

where U is the session/channel subspace matrix, V is the speaker
subspace matrix, andD represents the diagonal residual matrix. The
vectors u, v and d are the projections of y in their respective sub-
spaces. The session/channel compensated GMM mean shifted su-
pervector is given by y′ = V v + Dd. In our implementation,
we have used V v factor only ignoring the residual factor and the
compensated supervectors of the training and testing utterances are
compared using cosine kernel method as suggested in [10]

4.2. Linear discriminant analysis

Linear discriminant analysis (LDA) is a commonly used method for
dimensionality reduction and is widely used in pattern recognition
applications. In LDA, the feature vectors are projected down to a
set of new orthogonal axises where the discrimination between dif-
ferent classes is maximum. The projection matrix is composed by
the eigen vectors corresponding to the best eigen values of the eigen
analysis equation, (W−1B)v = λv, where W is the within-class
covariance matrix,B is the between-class covariance matrix, v is an
arbitrary vector, and λ is the diagonal matrix of eigen values [1].

4.3. Within class covariance normalization

In within class covariance normalization (WCCN) method, the fea-
ture vectors are transformed using a matrix which minimizes the up-
per bounds on the classification error metric and hence minimizes
the classification error [11]. The transformation matrix B is ob-
tained by Cholesky decomposition of the inverse of the within-class
covariance matrix W as,W−1 = BBt.

5. EXPERIMENTAL SETUP

The experiments are performed using the NIST 2003 SRE database.
It contains speech data of 356 target speakers collected over cellular
phone network. The evaluation of the system is done as per the NIST
2003 SRE evaluation plan for primary task [12]. This experimental
setup contains 24981 trials for verification task including true and
false trials. The standard MFCC feature vectors of 39-dimensions
with cepstral mean and variance normalization are used. An energy
based VAD is used for selecting the speech frames. The Switch-
board Cellular Part 2 corpus is used as the development data for all
the systems. A gender-independent UBM model of 1024 Gaussian
mixtures created using approximately 10 hours of the development
speech data is used for all the systems. The GMM supervectors are
created by adapting only the mean parameters of the UBM using
maximum a posteriori (MAP) approach with the speaker specific
data. The total variability matrix of 400 columns for the i-vector
based system and the dictionary of 400 atoms for the proposed SR-
SV systems are created using 1872 speech utterances taken from

Table 1. Performances of proposed and various contrast speaker
verification systems on NIST 2003 SRE dataset

System EER (%) minDCF

Cosine super vector 8.42 0.161
kernel i-vector 4.21 0.072
SRC, xmplr super vector 6.50 0.117
dict i-vector 6.78 0.121
Proposed lrnd dict 5.23 0.097
SR-SV discr. lrnd dict 2.89 0.051

the development database. θ of value 0.7 is used for learning the
discriminative dictionary. 400 imposter speaker utterances from the
development database are used for creating the dictionary for the
SRC system with exemplar dictionary. The JFA is made up of 300
speaker factors and 100 channel factors without the residual factor.
The LDA and WCCN matrices are created using the same develop-
ment data which is used for learning the total variability matrix and
the dictionaries. The LDA for the i-vector system uses 250 top di-
mensions where as the proposed SRC based system uses LDA of 375
top dimensions. All the above mentioned parameters are chosen out
of experimentation. The performance of the SV systems are eval-
uated using the equal error rate (EER) and the minimum detection
cost function (minDCF).

6. RESULTS AND DISCUSSION

The performances of the contrast systems and the proposed SR-
SV system on NIST 2003 SRE dataset are given in Table 1. The
cosine kernel scoring based systems with the GMM mean shifted
supervectors and the i-vectors have resulted in an EER of 8.42 %
and 4.21 %, respectively. The reduced dimension i-vector based
system has already reported to significantly outperform the much
larger dimension GMMmean shifted supervector based system. The
SRC over exemplar dictionary based systems result in an EER of
6.50 % and 6.78 % for the GMM mean shifted supervector and the
i-vector cases, respectively. As reported in the literature [4, 5], the
performances of both SRC with exemplar dictionary based systems
turn out to be lower than that of the i-vector based system. In the
proposed SR-SV system, the simple learned and discriminatively
learned dictionaries have been tried and have resulted in an EER
of 5.23 % and 2.89 %, respectively. It is to note that among the
four sparse representation based systems tried, the learned dictio-
nary ones have significantly outperformed the exemplar ones and
thus emphasizing the effectiveness of learned dictionaries for classi-
fication task.

There are some obvious similarities between the proposed SR-
SV and the i-vector based systems those can be noted by comparing
Eq. 2 with Eq. 7. The matrices D and T have the same size and
the projections x and w of the GMM mean shifted supervector de-
rived from those matrices are used for classification with the same
scoring metric. The main differences between the two lie in the dif-
ferent criteria used for learning those matrices and the nature of the
projections derived from them. The projection in case of the SR-SV
system is sparse while the one in case of the i-vector based system
is full. Further, we hypothesize that training of the reduced rank to-
tal variability matrix T and learning of the redundant dictionary D

have somewhat similar goals i.e., to develop a more compact model
for classification. The better performance of the i-vector based sys-
tem compared to that of the SR-SV system with simple learned dic-
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Table 2. Performances of proposed and various contrast speaker
verification systems with session/channel compensation on NIST
2003 SRE dataset

System + session/channel comp. EER (%) minDCF

Cosine super vector + JFA 3.61 0.066
kernel i-vector + LDA + WCCN 2.24 0.037
SRC, super vector + JFA 4.01 0.069
xmplr dict i-vector + LDA + WCCN 5.42 0.102
Proposed discrm. dict + LDA 2.75 0.048
sprs rep. discrm. dict + WCCN 2.71 0.049
lrnd dict. discrm. dict + JFA 1.53 0.028

tionary is hypothesized to be the attribute of the probabilistic PCA
method used for the creation of T matrix which could have imparted
some discriminative ability to it. On the other hand when an explicit
discriminative criterion is employed in dictionary learning it signifi-
cantly boosts the classification ability. As a result, proposed SR-SV
system with discriminatively learned dictionary has shown signifi-
cantly improved performance in comparison to the state-of-the-art
system based on the i-vectors.

To explore the effectiveness of the proposed SV system in pres-
ence of the session/channel variability compensation, we have ap-
plied suitable methods among JFA, LDA and WCCN to different
SV systems considered. In SR-SV systems only the one with dis-
criminatively learned dictionary is considered as it’s performance is
much better than that of the simple learned dictionary one. For the
cosine kernel scoring of GMM mean shifted supervector based sys-
tem, the supervectors are JFA compensated prior to scoring. But
for the i-vector based system, LDA and WCCN are applied to the
i-vector as suggested in [1]. Similarly, for the SRC over exemplar
dictionary based systems, the appropriate compensation methods are
applied consistent with the kind of vectors used. For the considered
SR-SV system, the compensation is applied in two ways: one as
LDA/WCCN applied to the sparse projection and other as JFA ap-
plied to the supervectors prior to the dictionary learning. The perfor-
mance of different SV systems on NIST 2003 SRE dataset with ap-
propriate kind(s) of session/channel compensation applied are given
in Table 2. On comparing Table 1 and Table 2, we note that the rel-
ative ordering of the performances of different systems considered
remains the same with and without application of session/channel
variability compensation. The two best performing systems after
session/channel variability compensation are the SR-SV with dis-
criminatively learned dictionary and the i-vector based system hav-
ing EER of 1.53 % and 2.24 %, respectively. Note that both systems
have undergone similar relative improvement over their uncompen-
sated performances with the application of suitable session/channel
compensation. Further we note that for sparse representation based
systems, preprocessing of the the vector with JFA has been found to
be more effective compared to postprocessing with LDA/WCCN.

7. CONCLUSIONS

A novel SR-SV system has been proposed employing the sparse rep-
resentation of the GMM mean shifted supervectors over the learned
dictionaries. For dictionary learning, both simple as well as dis-
criminative criteria have been explored. The proposed system was
compared to two recently suggested SRC over exemplar dictionary
based SV systems as well as the existing i-vector based SV system.
On NIST 2003 SRE dataset, the proposed SR-SV system with dis-

criminatively learned dictionary is found to outperform all other SV
systems considered both with and without the session/channel vari-
ability compensation. As a future work, we would like to explore
the reasons behind such enhanced performance exhibited by the pro-
posed SV system in detail and also to evaluate it on a more up-to-date
publicly available datasets such as NIST 2005 SRE.

8. ACKNOWLEDGEMENT

This work has been supported by the ongoing project grant No.
12(4)/2009-ESD sponsored by the Department of Information Tech-
nology, Government of India.

9. REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-
let, “Front-end factor analysis for speaker verification,” IEEE
Trans. on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788 –798, May 2011.

[2] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Ro-
bust face recognition via sparse representation,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 31, no. 2,
pp. 210–227, Feb 2009.

[3] I. Naseem, R. Togneri, and M. Bennamoun, “Sparse represen-
tation for speaker identification,” in Proc. ICPR, Aug 2010, pp.
4460–4463.

[4] J. M. K. Kua, E. Ambikairajah, J. Epps, and R. Togneri,
“Speaker verification using sparse representation classifica-
tion,” in Proc. ICASSP, May 2011, pp. 4548–4551.

[5] M. Li, X. Zhang, Y. Yan, and S. Narayanan, “Speaker verifica-
tion using sparse representations on total variability i-vectors,”
in Proc. Interspeech, Aug 2011, pp. 2729–2732.

[6] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp.
4311–4322, Nov. 2006.

[7] M. Li and S. Narayanan, “Robust talking face video verifica-
tion using joint factor analysis and sparse representation on
gmm mean shifted supervectors,” in Proc. ICASSP, May 2011,
pp. 4835–4838.

[8] F. Rodriguez and G. Sapiro, “Sparse representations for im-
age classification: Learning discriminative and reconstructive
non-parametric dictionaries,” IMA Preprint 2213, University
of Minnesota, Tech. Rep., Jun 2008.

[9] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel,
“Speaker and session variability in gmm-based speaker veri-
fication,” IEEE Trans. on Audio, Speech, and Language Pro-
cessing, vol. 15, no. 4, pp. 1448 –1460, May 2007.

[10] D. Garcia-Romero and C. Y. Espy-Wilson, “Joint factor analy-
sis for speaker recognition reinterpreted as signal coding using
overcomplete dictionaries,” in Proc. Odyssey: The Speaker and
Language Recognition Workshop, 2010.

[11] A. O. Hatch, S. Kajarekar, and A. Stolcke, “Within-class co-
variance normalization for svm-based speaker recognition,” in
Proc. ICSLP, 2006, pp. 1471–1474.

[12] NIST 2003 Speaker Recognition Evaluation Plan,
www.itl.nist.gov/iad/mig/tests/sre/2003/2003-spkrec-evalplan-
v2.2.pdf.

4788


