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ABSTRACT
Short speech duration remains a critical factor of performance

degradation when deploying a speaker verification system. To

overcome this difficulty, a large number of commercial ap-

plications impose the use of fixed pass-phrases. In this con-

text, we show that the performance of the popular i-vector

approach can be greatly improved by taking advantage of the

phonetic information that they convey. Moreover, as i-vectors

require a conditioning process to reach high accuracy, we

show that further improvements are possible by taking ad-

vantage of this phonetic information within the normalisation

process. We compare two methods, Within Class Covariance

Normalization (WCCN) and Eigen Factor Radial (EFR), both

relying on parameters estimated on the same development

data. Our study suggests that WCCN is more robust to data

mismatch but less efficient than EFR when the development

data has a better match with the test data.

Index Terms— Speaker verification, Phonetic constraint,

i-vector , short duration

1. INTRODUCTION

Initially introduced for speaker recognition, i-vectors [1]

have become very popular in the field of speech processing

and recent publications show that they are also reliable for

language recognition [2] and speaker diarization [3]. Indeed,

i-vectors extraction can be seen as a compression process

aiming at representing speech segments variability in a low-

dimensionality space. Hence, i-vectors convey the speaker

characteristic among other information such as transmission

channel, acoustic environment or phonetic content of the

speech segment.

In [4], it was shown that for short duration (down to 2s)

text-independent speaker verification, i-vector systems could

reach the same performance as the classical Joint Factor Anal-

ysis (JFA) approach but do not provide noticeable improve-

ment. Thus, short duration constraint still poses a serious

issue for text-independent speaker verification. One way to

improve speaker verification accuracy in the context of short

duration is to constrain the lexical content of training and test

speech in order to harness the phonetic and temporal struc-

ture of the utterances [5, 6]. By nature, the Total Variability

framework does not take advantage of the temporal structure

of speech and an i-vector extracted from a sufficiently long

speech segment would have the speaker information charac-

terized uniformly under all the phonetic classes. This is not

the case for short utterances, where the i-vector will be em-

phasized toward certain phonetic classes depending on the

content of the utterances. This phonetic constraint conveyed

by the i-vectors could be used to reinforce the speaker charac-

terisation when dealing with short duration utterances. This

work focuses on the effect of phonetic-constraint in speech

utterances shorter than 3 seconds, on speaker verification per-

formance within the i-vector paradigm.

Several normalisation approaches have been proposed

for session compensation and i-vector conditioning [1, 7, 8].

Two methods that have shown significant improvement for

speaker verification are Within Class Covariance Normalisa-

tion (WCCN) [1] and Eigen Factor Radial (EFR) [7] which

includes also the length normalisation proposed in [8]. Both

of these methods are based on dilating the Total Variability

space as the mean to reduce the within-class variability. For

text-independent speaker verification, the within-class vari-

ability corresponds to the speaker inter-session variability.

Now that the focus is on phonetically-constrained utterances,

we propose to re-define the within-class variability according

to both speaker identity and phonetic content of the utterances

and to compare its benefits for both WCCN and EFR. Finally,

we extend our comparison in order to assess the robustness of

WCCN and EFR to data mismatch as such comparison does

not exist in the literature according to our knowledge.

Section 2 describes the i-vector fundamentals and the ses-

sion compensation algorithms while Section 3 presents the

corpora and experimental protocol used for this study. Sec-

tion 4 shows the effect of phonetic constraint on speaker veri-

fication performance. In Section 5, we show the benefits of

including phonetic information in the definition of within-

class variability and present a preliminary study of WCCN

and EFR robustness to data mismatch. Finally, Section 6 pro-

vides conclusions and avenues for future work.
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2. TOTAL VARIABILITY PARADIGM

2.1. I-vector extraction

I-vectors are now very popular in the field of speaker recog-

nition and detailed descriptions of the Total Variability

paradigm could be found in [1, 2, 4]. The i-vector extrac-

tion could be seen as a probabilistic compression process

that reduces the dimensionality of speech-session super-

vectors according to a linear-Gaussian model. The speaker-

and channel-dependent super-vector m(s,h) of concatenated

Gaussian Mixture Model (GMM) means is projected in a

low dimensionality space, named Total Variability space, as

follows

m(s,h) = m+ Tw(s,h) (1)

where m is the mean super-vector of a gender-dependent Uni-

versal Background Model (UBM), T is called Total Variabil-

ity matrix and w(s,h) is the resulting i-vector .

Compared to Eigenvoice modeling, which has been

shown to capture mainly the speaker characteristics with

very short utterances [9], i-vectors convey, in addition to the

speaker characteristics, other information such as transmis-

sion channel, acoustic environment or phonetic content of the

speech segments. Session compensation or i-vector normal-

isation should thus be applied in order to isolate the targeted

speaker information from other unwanted variability.

2.2. I-vector normalisation

In order to condition i-vectors for a specific task, different

normalisation process have been proposed recently [1, 7, 8].

Two of them, WCCN [1] and EFR [7], are especially dealing

with session compensation.

WCCN scales the Total Variability space by a matrix B in

order to suppress high within-class covariance. For speaker

verification, B is obtained by the Cholesky decomposition

of the within-class covariance matrix Wwccn, i.e. W−1
wccn =

BBt. The matrix Wwccn is calculated over a large data set by

using:

Wwccn =
1

S

S∑

s=1

1

ns

ns∑

i=1

ws
i (2)

where S is the number of speakers in the data set, and there

are ns number of sessions for each of these speakers. Each

utterance is compactly represented as an i-vector ws
i . Dis-

tance between speech segments could then be computed with

a weighted Cosine Similarity Score (CS) given by:

CS(w1, w2) =
< Btw1|Btw2 >

||Btw1|| ||Btw2|| (3)

EFR has been introduced in [7] to condition i-vectors and re-

duce session variability, as follows

w ← V − 1
2 (w − w)√

(w − w)V −1(w − w)
(4)

where V and w are respectively the covariance matrix and

the mean vector estimated from a large development set of i-
vectors (note that this normalisation could be iterated to prop-

erly condition the data but that does not provide any benefits

here). A Mahalanobis-based scoring function could then be

used as speaker detection scoring:

score(w1, w2) = (w1 − w2)
tW−1(w1 − w2) (5)

where W is the within-class covariance matrix computed on

the EFR normalized vectors.

The main drawback of these two methods comes from

their dependency on the development set that has to be repre-

sentative of the unseen test material.

3. EXPERIMENTAL SET-UP
3.1. Corpora

Experiments are performed on the RSR20151 database, a

new corpus designed to evaluate text-dependent speaker ver-

ification engines. This database contains recordings from

100 male speakers using six different cell-phones or tablets.

Thirty pass-phrases (each less than 3s) and thirty short com-

mands (each less than 1s) are recorded in nine sessions for

each speaker. The pass-phrases and command are the same

for all 100 speakers in order to simulate imposture attacks

and each speaker records on a minimum of three different

devices. A more detailed description of RSR2015 could be

found in [10].

Two others corpora were also used in our experiments.

We used the entire Switchboard provided by LDC and an

in-house corpus which includes the recordings of 118 male

speakers recorded in similar condition as RSR2015 but using

different portable devices and texts.

3.2. Experimental protocol

Our experiments operate on 19 Mel-Frequency Cepstral Co-

efficients (plus energy) augmented with 19 first (Δ) and 11

second (ΔΔ) derivatives. The bandwidth is limited to 300-

3400Hz. The analysis window is 20ms with 10ms shifting.

Lower energy frames are removed and cepstral mean subtrac-

tion is applied to the remaining features.

A 512 mixtures UBM and the Total Variability matrix are

estimated using 790 speakers and 12,422 sessions taken from

Switchboard and the in-house database. The dimensionality

of i-vectors is 400. The RSR2015 database is divided in two

partitions, namely, RSR2015 norm and RSR2015 eval, each

containing 50 speakers. Both WCCN and EFR parameters

are estimated for three different development sets:

PASS-PHRASES, which is composed of all pass-phrases

from the 50 speakers of the RSR2015 norm data set

(13,500 utterances).

1http://www1.i2r.a-star.edu.sg/˜kalee/RSR2015_
WEB/RSR2015.html
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COMMANDS, which is composed of all short commands

from the 50 speakers of the RSR2015 norm data set

(13,500 utterances).

SWB, which is composed of 672 speakers from Switchboard

databases recorded through telephone channel (6,522

utterances).

Note that the PASS-PHRASES development set has the clos-

est match to the test data (derived from the RSR2015 eval) in

terms of channel, duration and phonetic content are similar.

The COMMANDS set match on the channel of the test set since

the duration and phonetic content are different. Finally, the

SWB set is strongly mismatched with the test data in terms of

channel and duration, thus it could be considered as the most

different one. The average duration of utterances for the three

development sets (PASS-PHRASES, COMMANDS,SWB) are

0.75s, 0.43s and 79.66s, respectively. The test segments, as

described below, has an average duration of 0.93s.

The test set is derived from the RSR2015 eval. For all the

50 speakers, the three first recordings are used for training and

the remaining six sessions are used as test segments. A trial

would simply involves comparison of i-vector extracted for

a training utterance of a speaker with the i-vector extracted

from test segment. We use all the cross-pairs between train-

ing and test segments made available in the RSR2015 eval
partition. As we consider phonetically-constrained speaker

verification task, we separate the trials into four categories

according to the condition whether the user is the target client

or an impostor and whether the phonetic content is the same

for training and test segments. Table 1 shows the number

of each type of trials resulting from our protocol. Notice

Same phonetic contain Different phonetic contain

Target User
CLIENT-same CLIENT-diff

(26,913) (390,185)

Impostor
IMP-same IMP-diff

(659,286) (19,119,255)

Table 1. Different types and numbers of trials in phonetically-

constrained speaker verification

that the Same phonetic content condition of our protocol only

considers the case where the full utterances are the same (i.e,

text-dependent speaker recognition). Future work has to in-

clude cases where the phonetic content still the same when

sequences differ.

4. INFLUENCE OF THE PHONETIC CONTENT ON
I-VECTOR SPEAKER VERIFICATION

The first experiment is performed in order to assess the contri-

bution of phonetic constraint for short duration speaker verifi-

cation. Figure 1 shows the performance of the i-vector system

using the Cosine Scoring without any normalisation process

depending on the nature of the target and impostor trials. The

first configuration, similar to text-independent condition, is

provided as a baseline. The phonetic content used during test

for both target speakers and impostor is different from the

one used for training (CLIENT-diff / IMP-diff ). The Equal

Error Rate in this case, 43.06%, drops by 74% to 15.38% in

a second configuration where both target and impostor users

pronounce the same phonetic-content that was used for train-

ing (CLIENT-same / IMP-same). A third configuration shows

that EER falls to 8.02% in the optimal case where only target

users know the proper phonetic content and impostors pro-

nounce a different one (CLIENT-same / IMP-diff ). This ex-

Fig. 1. EER for different trials configuration.

periment shows that the phonetic information conveyed by

i-vectors could be used to improve accuracy of speaker veri-

fication in short duration context. All experiments in the rest

of this paper consider the case where both target users and

impostors pronounce the same phonetic content as the one

used for training (CLIENT-same / IMP-same). Indeed, this

configuration is closer to the realistic case of a phonetically-

constrained application.

5. INFLUENCE OF THE NORMALISATION
TRAINING SET

The second experiment is designed to compare the influence

of development dataset and class definition on both WCCN

and EFR.

Rows 1, 2 and 3 of Table 2, shows the performance of the

i-vector system using these two normalisation methods when

moving the development dataset closer to the test set. Within-

class variability is defined according to speaker identity only.

Performance of i-vectors using Cosine Scoring without nor-

malisation is reported as a baseline and is enhanced by all

normalisations. As expected, the performance improves when

the development set get more similar to the test data for both

WCCN and EFR. EER reduces from 13.85% to 10.54% and

9.37% for EFR and from 13.36% to 10.42% and 10.01% for

WCCN when moving from SWB to COMMANDS and then

PASS-PHRASES respectively. These results highlight the im-

portance of development set for i-vector normalisation as the

reduction of Equal Error Rate observed when moving from

SWB to PASS-PHRASES is more than 33% relative for EFR

conditioning.

When comparing the methods, results suggest that WCCN
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tends to be slightly more robust than EFR to the mismatch be-

tween development and test data. When training the normal-

isation parameters on SWB, EER obtained by using WCCN

(13.36%) is 3.6% less than when using EFR (13.85%) rela-

tively. For normalisation parameters trained on COMMANDS

(closer to test data), the gap between normalisation methods

is less but still in favour of WCCN with EER of 10.42% and

10.54% for EFR. However, when development share similar

phonetic content, channel and duration with test data (PASS-

PHRASES), EFR outperforms WCCN. The EER obtained

with WCCN is 10.01% when it is 9.37% for EFR (−6.4%
relative). This result suggests that EFR is more effective than

WCCN but less robust to data mismatch.

Development Set
i-vector scoring

EFR CS + WCCN CS

SWB 13.85 13.36

15.38
COMMANDS 10.54 10.42

PASS-PHRASES 9.37 10.01

PASS-PHRASES
7.88 9.67

speaker + phonetic

Table 2. Performances of Eigen Factor Radial (EFR) and Cosine

Scoring (CS) with and without WCCN in terms of EER (%) for dif-

ferent development datasets and classes definitions.

In the context of short duration, speaker identity and pho-

netic content could be expected to be the main sources of

variability. For applications where the text pronounced dur-

ing training and test is fixed, it is possible to use this knowl-

edge in order to improve the i-vector normalisation. Indeed,

both WCCN and EFR are conditioning the i-vectors in or-

der to minimize the within-class variability. In this work,

we propose to define those classes according to both speaker

and phonetic content instead of grouping all sessions from a

same speaker. Rows 3 and 4 of Table 2 respectively show the

performance of the two normalisation methods when using

the classical definition of within-class variability or when in-

cluding the phonetic information. Defining the normalisation

classes by using speaker and phonetic information improves

the accuracy for both WCCN and Eigen Factor Radial. As

observed above, when the classes defined for normalisation

training exactly match the test classes, i.e. one speaker and

one phonetic content per class, we observe that the gain for

EFR is more important than in the case of WCCN, respec-

tively 15, 9% and 3, 4% of relative improvement.

Further experiments has to be performed in future works

in order to distinguish between the effect of duration, channel

and phonetic mismatch and to confirm the benefit of adding

phonetic information in the within-class definition when deal-

ing with channel mismatch.

6. CONCLUSION

In this paper we focused on the influence of phonetic con-

straint in short utterances for speaker verification. We showed

that using the phonetic information conveyed by i-vectors

could lead to substantial improvement, up to 74% in terms

of EER. We underlined the importance of an adequate devel-

opment dataset on WCCN and Eigen Factor Radial methods.

Our analysis suggests that WCCN is more robust to data mis-

match when Eigen Factor Radial performs better for similar

conditions. This preliminary work needs to be continued as

several questions remain regarding the importance of indi-

vidual factors such as duration, channel or phonetic content

on the robustness of the different normalisations. Finally we

showed that it is possible to take advantage of a phonetic

constraint for i-vector normalisation by using a phonetic clas-

sification of the development data. This adaptation of WCCN

and Eigen Factor Radial has led to relative reduction of EER

of 3.4% and 5.9% respectively. In the future, we intend to

continue exploring the impact of phonetic information on

i-vector normalisation by considering the correlation between

the existing speaker discrimination scoring and different be-

tween -utterances phonetic distances for very short durations.
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