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ABSTRACT

Different short-term spectrum estimators for speaker verification
under additive noise are considered. Conventionally, mel-frequency
cepstral coefficients (MFCCs) are computed from discrete Fourier
transform (DFT) spectra of windowed speech frames. Recently, lin-
ear prediction (LP) and its temporally weighted variants have been
substituted as the spectrum analysis method in speech and speaker
recognition. In this paper, 12 different short-term spectrum estima-
tion methods are compared for speaker verification under additive
noise contamination. Experimental results conducted on NIST 2002
SRE show that the spectrum estimation method has a large effect on
recognition performance and stabilized weighted LP (SWLP) and
minimum variance distortionless response (MVDR) methods yield
approximately 7 % and 8 % relative improvements over the stan-
dard DFT method at -10 dB SNR level of factory and babble noises,
respectively in terms of equal error rate (EER).

Index Terms— spectrum estimation, speaker verification

1. INTRODUCTION

Short-term spectrum estimation is an integral part in speech and au-
dio applications. Discrete Fourier transform (DFT) and linear pre-
diction (LP) are the two most commonly used methods for esti-
mating the short-term spectrum, which is subsequently transformed
into a feature vector [1]. Typically, mel-frequency cepstral coeffi-
cients (MFCCs) and linear predictive cepstral coefficients (LPCCs)
are used as features in speech and speaker recognition [2]. The fea-
tures are used for modeling speakers or phonemic information using,
e.g., Gaussian mixture models [3, 4, 5].

Two major challenges in speaker recognition are to deal with
channel mismatch and additive noise contamination. Channel mis-
match occurs when the training and test handsets or channels are
different (e.g., landline versus wireless). In additive noise contam-
ination, recognition accuracy decreases because other environmen-
tal sounds get added to the speech signal. A number of techniques
have been proposed for compensating these adverse effects. Speech
enhancement techniques such as spectral subtraction [6] can be ap-
plied prior to feature extraction. Feature domain methods such as
RASTA filtering [7] and cepstral mean and variance normalization
(CMVN), in turn, improve robustness against channel mismatch or
additive noise. Score normalization [8] is commonly used for deal-
ing with score variabilities across different conditions or speakers.
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These methods are usually combined in a full speaker recognition
system.

Recently, conventional DFT spectrum estimation was compared
to LP-based methods in speaker verification under additive noise
[9]. It was reported that LP-based spectrum estimators outperform
the DFT method in terms of recognition accuracy. In another re-
cent study, a non-parametric multitaper spectrum estimator was
used for MFCC extraction in speaker recognition [10, 11]. In that
study, the multitaper method also outperformed the standard DFT
method. In [12], the minimum variance distortionless response
(MVDR) method [13] was proposed for MFCC extraction in auto-
matic speech recognition (ASR) with promising results. In [14], the
MVDR method was applied to speaker verification. It was reported
that baseline MFCCs outperforms the proposed method whereas
fusion of two systems improves the recognition accuracy.

Another LP-based method, regularized LP (RLP), was proposed
in [15] to improve spectral envelope estimation by penalizing rapid
spectral changes in the conventional LP method. Another simple
technique for spectrum envelope estimation method uses iterative
cepstral smoothing (ICS) to remove harmonic information from a
DFT spectrum [16]. To the best of our knowledge, the RLP and
ICS methods have not been previously applied to speaker recogni-
tion. The LP variants and multitaper methods in [9, 10, 11] were
compared with different speaker recognition set-ups.

In this paper, we compare a wide range of different short-
term spectrum estimation methods for MFCC feature extraction
on speaker recognition performance under additive noise contami-
nation. Seven different all-pole spectrum estimation methods, the
multi-taper method with three different window functions and the
ICS based spectrum estimation method are evaluated in comparison
to a standard DFT method. The all-pole methods are conventional
LP, weighted linear prediction (WLP), stabilized WLP (SWLP)
[17], eXtended weighted linear prediction (XLP) and its stabilized
version (SXLP) [18], MVDR and RLP.

2. SPECTRUM ESTIMATION METHODS

2.1. Nonparametric spectrum estimators

In the conventional DFT spectrum estimator [1], the power spectrum
of windowed speech frame is computed as:

SDFT(f) =
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where f is the frequency, w(n) is the window function (here, Ham-
ming) and x(n) is a speech frame of N samples. Windowing re-
duces the bias but variance remains high [10]. To reduce variance,
the multi-taper method can be used instead [10, 11]:

SMT(f) =
K∑

k=1

λk

∣∣∣∣∣
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n=0

wk(n)x(n)e
−j2πnf/N

∣∣∣∣∣
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Here, K is the number of tapers and wk(n), k = 1, . . . , K are the
tapers with weights λk. Thus, the multitaper spectrum estimate is
a weighted average of K individual spectra. In the literature, there
exists a number of different tapers for spectrum estimation. In this
study we consider the Thomson, multipeak and sine weighted cep-
strum estimator (SWCE) tapers as in [11].

The ICS method [16] is based on the cepstral smoothing tech-
nique. First, the DFT spectrum of the analysis frame S(f) is com-
puted using (1). The spectral envelope at iteration i, Ai(f) is then
updated as the maximum of the original spectrum and the current
spectral envelope, Ci−1(f),

Ai(f) = max(log |S(f)|, Ci−1(f)), (3)

where Ci(f) is the cepstrally smoothed spectrum at the ith iteration.
A0(f) = log |S(f)| is used to compute C0(f) for the initial setting
as the starting point.

2.2. Parametric all-pole spectrum estimators

A pth order LP analysis [1] assumes that each speech sample at
a given discrete time index n, can be estimated as a linear com-
bination of its p previous samples, x̂(n) =

∑p
k=1

akx(n − k),
where x(n) is the original speech sample and x̂(n) is the predicted
sample. The objective of LP analysis is to find the predictor co-
efficients, ak, by minimizing the energy of the prediction residual,
E =

∑
n(x(n)−

∑p
k=1

akx(n− k))2. Given p prediction coeffi-
cients, ak, k = 1, 2, . . . , p, the LP spectral envelope is computed
by:

SLP(f) =
1

|1−
∑p

k=1
ake−j2πfk|2

. (4)

In WLP [17], predictor coefficients, bk, are computed by minimiz-
ing the energy of a weighted squared error signal, E =

∑
n(x(n)−∑p

k=1
bkx(n− k))2Wn, where Wn is the short-time energy (STE)

of the signal history, Wn =
∑M

i=1 x
2(n− i) and M is the length of

the STE window. The WLP method corresponds to conventional LP
analysis for the case of weighting function chosen as Wn = d, for
all n and d �= 0.

Conventional autocorrelation LP guarantees the stability of the
all-pole model (i.e. filter poles are inside the unit circle). Filter sta-
bility is essential in speech coding and synthesis applications. How-
ever, such a guarantee does not exist for the WLP method. Thus,
stabilized WLP (SWLP) was proposed in [17] which uses a recur-
sive weighting function.

In XLP [18], the predictor coefficients, ck , are computed by
minimizing the following objective function:

EXLP =
∑

n

(x(n)Zn,0 −

p∑

k=1

ckx(n− k)Zn,k)
2
, (5)

where Zn,j = m−1

m
Zn−1,j + 1

m
(|x(n)| + |x(n − j)|) and

Zn,j = 0 for j < 0. The stabilized version of XLP, SXLP,
corresponds to the case of weighting function Zn,j chosen as
Z

′

n,j = max(Zn,j , Zn−1,j−1).
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Fig. 1. Short-term spectra of an original speech frame taken from the
NIST 2002 SRE corpus (left) and its factory noise corrupted (0 dB
SNR) counterpart (right). (a) and (b) parametric (all-pole) spectra
(c) and (d) non-parametric spectra. The spectra in each plot have
been shifted for better visualization.

The RLP method [15] introduces a penalty measure into the
filter optimization. The objective function for RLP becomes E =∑

n(x(n)−
∑p

k=1 vkx(n− k))2 + λg(v), where λ is the regular-
ization constant and g(v) is the penalty measure which is a function
of prediction coefficients, v = [v0, v1, . . . , vp]

T. As λ increases,
the corresponding spectral envelope gets smoother and as λ → 0,
RLP reduces to the conventional LP method. Minimizing the regu-
larized objective function leads to the following solution:

v
RLP
opt = −(R+ λDRD)−1

r, (6)

where R is the autocorrelation matrix, D is a diagonal matrix in
which each diagonal element has the value of the row number and
r is the autocorrelation vector. For WLP, SWLP, XLP, SXLP and
RLP the spectral envelope is computed by Fourier-transforming the
corresponding all-pole transfer function.

The MVDR spectrum estimation method (also known as the
Capon method or maximum likelihood (ML) spectrum estimation
method) [13] was shown to be an effective method that models the
unvoiced or mixed speech spectra by using the LP coefficients. An
mth order MVDR spectrum is computed by

SMVDR(f) =
1

|
∑m

k=−m μ(k)e−j2πfk|2
, (7)

where m is the MVDR filter order and the parameters μ(k) are com-
puted by a simple non-iterative method from the LP coefficients [13].

Fig. 1 shows the short-term spectra of an original voiced speech
frame (left panel) and its 0 dB noisy counterpart (right panel) com-
puted using different methods. Prediction order p = 20 has been
used for the all-pole methods.

3. EXPERIMENTAL SETUP

3.1. Corpora, classifier and error measurement

To compare different spectrum estimators, we use a Gaussian mix-
ture model - universal background model (GMM-UBM) [3] with test
normalization (Tnorm) applied on the log-likelihood ratio scores.
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Table 1. EERs (in %) for different spectrum estimators under additive factory noise (The smallest EER for each SNR level within each
sub-group is underlined and globally smallest EER in each row is bolded).

Baseline methods Temporally weighted methods Multitaper methods Other methods
SNR (dB) DFT LP WLP SWLP XLP SXLP Thomson Multipeak SWCE ICS MVDR RLP

original 7.65 7.44 7.48 7.81 7.94 7.78 7.39 7.41 7.32 8.01 7.62 7.57
20 8.08 7.83 7.81 8.22 8.04 7.98 7.95 8.18 8.00 8.45 8.30 7.81
10 9.32 8.50 8.79 9.11 8.85 8.85 9.12 9.42 9.20 9.55 9.12 8.75
0 10.46 9.93 10.34 10.06 10.01 9.99 10.63 11.07 11.09 10.88 10.36 10.29
-10 15.35 14.96 15.19 14.35 14.55 14.73 15.43 15.59 15.26 16.05 14.78 15.02

Table 2. EERs (in %) for different spectrum estimators under additive babble noise (The smallest EER for each SNR level within each
sub-group is underlined and globally smallest EER in each row is bolded).

Baseline methods Temporally weighted methods Multitaper methods Other methods
SNR (dB) DFT LP WLP SWLP XLP SXLP Thomson Multipeak SWCE ICS MVDR RLP

original 7.65 7.44 7.48 7.81 7.94 7.78 7.39 7.41 7.32 8.01 7.62 7.57
20 7.83 7.78 7.71 8.11 7.94 7.93 7.76 7.96 7.85 8.28 8.19 7.81
10 8.85 8.58 8.70 8.78 8.68 8.85 8.85 9.25 9.00 9.56 9.19 8.92
0 11.62 11.23 11.47 10.93 10.63 10.83 11.65 12.19 12.34 11.91 11.70 10.94
-10 21.27 20.35 21.02 19.69 20.35 20.23 21.77 21.86 21.52 22.03 19.68 20.12

This choice is mainly motivated by the large number of methods
and control parameters to be evaluated. Experiments are conducted
on the NIST 2002 SRE corpus which consists of 330 target speakers
(139 males, 191 females) and a total number of 39256 trials (2982
genuine, 36277 impostor). The training material consists of 2 min-
utes of conversational telephone speech while the duration of test
utterances varies from 15 to 45 seconds. Gender dependent back-
ground and Tnorm models with 512 Gaussians are trained using the
NIST 2001 SRE corpus.

For the experiments under additive noise, we use factory and
babble noises from the NOISEX-92 database 1. The target models,
background models and Tnorm cohort models are trained using orig-
inal data and the noise is added to the test samples with a given av-
erage signal-to-noise-ratio (SNR). Five different values of SNR are
considered in the experiments, SNR ∈ {clean, 20, 10, 0,−10} dB
where clean refers to the original NIST samples. We apply spectral
subtraction on the test samples as a preprocessing method.

We use equal error rate (EER) as the performance criterion. EER
corresponds to the threshold at which the false alarm rate (Pfa) and
miss rate (Pmiss) are equal. Additionally, a few selected detection
error trade-off (DET) curves are plotted to analyze the complete be-
haviour of the methods.

3.2. Feature extraction

MFCC features are extracted from 30 ms Hamming windowed
frames every 15 ms. Different methods are evaluated on the mag-
nitude spectrum estimation step of the MFCC extraction procedure.
12 MFCCs are extracted from a 27-channel mel-filterbank. After
RASTA filtering, the first and second order derivatives (Δ and ΔΔ)
are appended to the MFCC vectors. The last two steps are energy-
based voice activity detection (VAD) and cepstral mean and variance
normalization (CMVN).

3.3. Parameter setup for the spectrum estimators

Each spectrum estimator have its own control parameters. The num-
ber of spectral bins, 512, is common for all methods. For the all-

1http://www.speech.cs.cmu.edu/comp.speech/Section1/Data/noisex.html

pole methods, the prediction order is set to p = 20. In the tempo-
rally weighted LP methods, short-term energy window durations are
fixed to be M = 20 as in [9, 18]. The MVDR filter order is set to
m = 28 and for RLP, λ = 10−4 regularization parameter is used.
For the ICS spectrum estimator, I = 6 iteration is selected with 30
cepstral smoothing coefficients1. K = 6 tapers are used for SWCE
and multipeak windowing methods and K = 4 tapers for Thomson
in the multi-taper method.

4. SPEAKER VERIFICATION RESULTS

Table 1 and Table 2 summarize the results for different spectrum es-
timators under additive factory and babble noises, respectively. The
smallest EER of each row is bolded. Fig. 3 and Fig. 4 display the
DET curves for −10 dB SNR level of a few selected methods for
factory and babble noise, respectively.

For original data we observe that;

• The LP-based methods achieve slightly better recognition rate
than the DFT technique (7.65 %). XLP (7.34 %) and SWLP
(7.34 %) outperform the other all-pole methods.

• The Multitaper method with the SWCE window outperforms
the multipeak and Thomson windows. The SWCE method is
the best choice for original data condition.

• ICS technique gives the highest EER of 8.01%.

For additive factory noise contamination:

• Conventional LP method gives the smallest EER at high SNR
levels (20 dB condition is slightly worse than WLP and RLP).

• Thomson method outperforms SWCE and multipeak tec-
niques for 20, 10 and 0 dB conditions (e.g., 10.63 %, 11.09
% and 11.07 % at 0 dB for Thomson, SWCE and multipeak
methods, respectively) but SWCE wins at -10 dB SNR.

• For the noisiest case (-10 dB SNR) SWLP (14.35 %) outper-
forms the other weighted all-pole methods (15.19 %, 14.55
% and 14.73 % for WLP, XLP and SXLP, respectively).

1Note that this is different from the number of MFCCs which is 12 in all
methods
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Fig. 2. DET curves for different spectrum estimation methods under additive factory (left) and babble (right) noise (−10 dB SNR level)

• The ICS method gives the highest EERs at nearly all SNR
levels.

For additive babble noise contamination, the performance of spec-
trum estimators are very similar to the case of factory noise. How-
ever, MVDR method yields the smallest EER for the noisiest case
(-10 dB SNR).

5. CONCLUSION

We compared 12 different spectrum estimators in speaker verifica-
tion under additive noise contamination. In clean condition, mul-
titaper method with SWCE window outperformed remaining meth-
ods. In the baseline group, LP outperformed FFT in all cases. WLP
yielded smaller EER for high SNR levels in comparison to other
temporally weighted methods. However, SWLP gave the small-
est EER in the noisiest case. For the multitaper methods, smallest
EERs have been obtained with Thomson window for high SNRs. In
the noisiest case, the best recognition accuracy has been obtained
with SWCE. Under factory noise, in noisiest case the SWLP method
showed improvement on recognition accuracy over standard DFT
and LP techniques. In our experiments, for babble noise at -10 dB
SNR level, SWLP and MVDR techniques are found to be the two
best choices. Overall, the spectrum estimation step has a significant
impact on recognition performance under additive noise contami-
nation and temporally weighted methods and MVDR technique are
promising for speaker recognition.
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