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ABSTRACT

Recently, implicit trajectory modelling using temporally

varying model parameters has achieved promising gains over

the discriminatively trained standard HMM system. How-

ever, these works only focus on the temporally varying means

or precisions explicitly. It is interesting to explore the capa-

bility of temporally varying weights, since the effect of time

varying Gaussian parameters can be achieved by adjusting

the weights of Gaussian Mixture Models (GMM) for differ-

ent observation. This paper proposes a Temporally Varying

Weight Regression (TVWR) model to learn the importance

of different Gaussian components under different temporal

contexts. Technically, TVWR factorizes the HMM state like-

lihood such that the contextual information can be modelled

using time varying weights. Additionally, approximate con-

straints are derived to ensure a valid probabilistic model for

TVWR. Experimental results for continuous speech recog-

nition on Wall Street Journal show consistent improvements

with varying system complexity and about 12% relative sig-

nificant improvements in the best case.

Index Terms— trajectory modelling, complexity control,

regression, nonlinear constrained optimization

1. INTRODUCTION

Hidden Markov Models (HMMs) are commonly used in

speech recognition to represent a phone unit. Two funda-

mental assumptions are made so that efficient training and

decoding algorithms can be implemented: 1) the first-order

state transition probability only depends on the current state;

2) the observation output probability is independent of other

states and observations given the current state. However,

these assumptions are not valid for speech data which has

strong temporal correlations. In order to relax these limi-

tations, the state of the art HMM system always uses the

features with dynamic coefficients and GMM to achieve a

better resolution.

Several works have been attempted for trajectory mod-

elling explicitly or implicitly [1, 2, 3, 4, 5]. fMPE [3] and

RDLT [4] are successful examples implemented by tempo-

rally varying feature transformation, and these models can be

explained as temporally varying means and precisions in the

model space [1]. The success of these works comes from

the temporally varying transformation for each frame in the

feature or model space based on the rich information of tem-

poral context. These motivate us adjusting the GMM weights

to achieve the time varying emission distribution instead of

modifying features or Gaussian means and/or precisions ac-

cording to the different context.

The remaining of this paper is organized as follows. Sec-

tion 2 gives an overview of implicit trajectory modelling. Sec-

tion 3 formulates the proposed TVWR and constraints are de-

rived for valid modelling. Section 4 presents the details of

parameter estimation. Experimental results are reported in

Section 5.

2. OVERVIEW OF IMPLICIT TRAJECTORY
MODELLING

The independent output probability assumption can be cir-

cumvented by some trajectory modelling in the HMM frame-

work. Instead of explicitly modelling the trajectory of the

speech signal, implicit trajectory modelling is more popu-

lar for speech recognition in terms of efficiency and perfor-

mance. The aim of trajectory modelling for speech recog-

nition is to add the dependence in the model space [1, 2] or

remove the dependence in the feature space [3, 4, 5] explicitly

or implicitly by some kind of transformations. In this section,

only model space view of implicit trajectory modelling is re-

viewed.

The state j output probability in many trajectory models

with Gaussian mixture models can be written as follows:

p(ot|τt, j) =
M∑

m=1

p(m|τt, j)︸ ︷︷ ︸
cjmt

p(ot|τt, j,m)︸ ︷︷ ︸
N (ot;μjmt,Σjmt)

(1)

where τt is the context of observation ot, for simplicity, only

limited surrounding observations are used as a approximation,

denoted as τt = {ot−δ, . . . ,ot−1,ot+1, . . . ,ot+δ}, where δ
is the context expansion size, and the time varying parameters

{cjmt, μjmt,Σjmt} are a function of {τt,ot}.

Many works can be explained in this framework. If only

the mean is temporally varying, Eq.1 becomes fMPE [3] or
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RDLT [4], which can be formulated in the model space by a

semi-parametric representation [1]:

μjmt =

N∑
i=1

p(i|ot, τt)
(
A(i)μjm + b(i)

)

where p(i|ot, τt) is the posterior of class i given the observa-

tion and its context.

If only the covariance matrix is temporally varying, Eq.1

becomes pMPE [1], a similar formulation can be used

Σ−1
jmt =

N∑
i=1

p(i|ot, τt)
2C(i)Σ−1

jmC(i)T

If both the weight and mean are temporally varying, Eq.1

becomes Buried Markov Model (BMM) [2]:

p(ot|τt, j) =
∑
m,i

p(m|i, τt, j)p(i|τt, j)︸ ︷︷ ︸
cjmit

p(ot|m, i, τt, j)︸ ︷︷ ︸
N (ot;μjmit,Σjmi)

3. FORMULATION OF TVWR

As only the temporally varying weight is modelled and other

Gaussian parameters are constant within the state, the formu-

lation of Eq.1 is not appropriate for the discussion of TVWR.

Otherwise, the component output probability p(ot|τt, j,m) in

Eq.1 has to be assumed to be independent of the context. In-

stead, the joint probability of observation ot and the context

τt is used for derivation. If no temporally varying parameters

exist, this approach is just a standard HMM system using a

long span of observations as features:

p(ot, τt|j) =
M∑

m=1

p(m|j)p(ot, τt|j,m)

This system can benefit from the better temporal correlation

modelling but suffer from the highly increasing system com-

plexity. TVWR is formulated based on the factorization of

this joint probability:

p(ot, τt|j) =
M∑

m=1

p(m|j)p(τt|ot, j,m)︸ ︷︷ ︸
cjmt

p(ot|j,m) (2)

where the temporally varying weight is modelled by a prod-

uct of two factors: 1). the static part, p(m|j); 2) the dynamic

part, p(τt|ot, j,m). More specifically, considering the con-

vexity of the logarithm likelihood function and the positive

requirement, the conditional density function is modelled as

a regression function of some posteriors with respect to expo-

nentials:

p(τt|ot, j,m) =
1

Z

N∑
i=1

h(i|ot, τt) exp{wjm(i)} (3)

where h(i|ot, τt) is the posterior probability of class i given

{ot, τt}, which can be estimated by Neural Networks if su-

pervised by phone label or Gaussian classifier if using unsu-

pervised clustering, wjm is the regression parameter to learn,

Z is a global constant normalizer to be discussed later with

more details. The constraint for the static part of cjmt in Eq.2

can be easily derived:

M∑
m=1

p(m|j) = 1 ∀j (4)

In order to make Eq.3 a valid density function, the follow-

ing constraint is implied:∫
τt

p(τt|ot, j,m) dτt = 1 ∀j,m,ot

=⇒ 1

Z

N∑
i=1

exp{wjm(i)}
∫
τt

h(i|τt,ot) dτt = 1 (5)

Although Z is a global constant, which can be ignored

during training and decoding without affecting the perfor-

mance, it has to be defined explicitly to make the constraint

Eq.5 workable. Setting wjm = 0, which works as a reason-

able starting point of TVWR, can give a valid definition:

Z =

N∑
i=1

∫
τt

h(i|τt,ot) dτt (6)

Note that Z is independent of ot though ot occurs in the above

expression, given
∑N

i=1 h(i|τt,ot) = 1. After Z is known,

the Eq.5 can be rewritten as follows:

N∑
i=1

exp{wjm(i)}p(i|ot, h) = 1 ∀j,m,ot (7)

where

p(i|ot, h) =

∫
τt
h(i|τt,ot) dτt∑N

i=1

∫
τt
h(i|τt,ot) dτt

(8)

and h is used to add some possible dependence on the map-

ping function from {ot, τt} to the class posteriors. There

are two critical issues to apply constraints by Eq.7. The first

one is the estimation of p(i|ot, h), which can’t be estimated

directly from the training data.The second one is that there

could be infinite number of constraints if p(i|ot, h) has a

strong dependence on ot. Therefore, an approximation of

the constraints is made by dropping the dependency on ot,

which gives p(i|ot, h) ≈ p(i|h) and p(i|h) can be obtained

by following two ways:

1). sample based approximation

p(i|h) ≈
∑

t h(i|ot, τt)∑
i

∑
t h(i|ot, τt)

(9)

2). uniform distribution assumption

p(i|h) = 1

N
(10)
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4. PARAMETER ESTIMATION

In this section, only the time varying weight parameter es-

timation is discussed, while other Gaussian parameter esti-

mation is standard and not covered here. Instead of directly

optimizing the likelihood function. its auxiliary function is to

be maximized:

QML =
∑
t,j,m

γjm(t) log(cjmt)

=
∑
t,j,m

γjm(t)
(
log(cjm) + log

(∑
i

h(i|τ̂t) exp{wjm(i)}))

subject to constraints by Eq.4 and Eq.7 for all j = 1, 2, . . . , S,

where γjm(t) is the Gaussian component posterior, cjm =
p(m|j), and τ̂t = {τt,ot} is used to simplify the notation..

Since the static parameter cjm constrained by Eq.4 can be

optimized using the method by the standard system, we only

focus on the optimization of the wjm,

The above objective function is hard to optimize since

there is a summation inside the logarithm function. There-

fore, a lower bound is derived based on Jensen’s inequality so

that increasing such lower bound can guarantee the increase

or no change of the original function.

QML ≥ G =
∑
t,j,m

γjm(t)
∑
i

h(i|τ̂t)wjm(i) +Kconst

=
∑

t,j,m,i

γjm(t)h(i|τ̂t)wjm(i) +Kconst

where Kconst is the term independent of wjm.

In order to optimize the regression parameters for a partic-

ular state j, the problem becomes maximizing the following

linear function:

G(j) =

M∑
m

wT
jmhjm

subject to constraints by Eq.7, where

hjm =

T∑
t

γjm(t)ht

ht = [h(1|τ̂t), h(2|τ̂t), . . . , h(N |τ̂t)]T

Based on the spirit of EM algorithm, the statistics hjm are

assumed to be fixed and known when wjm is changing. This

is a good news for constrained optimization problem, which

requires iterative evaluation of the objective function G(j).

Once hjm are accumulated by one pass of training data, La-

grangian function can be applied for this maximum problem:

L(wj., λ.) =

M∑
m

wT
jmhjm

+

M∑
m

λm

( N∑
i

exp{wjm(i)}p(i|h)− 1
)

and then solve the below equation system:

∇wjm
L(wj., λ.) = 0 ∀m

∇λm
L(wj., λ.) = 0 ∀m

However, the above equation system is nonlinear, whose

solution is hard to be obtained. Thus, a nonlinear constrained

optimization tool implemented by interior point method [6] is

used.

5. EXPERIMENTAL RESULTS

In this section, experimental results are reported for word

recognition on the Wall Street Journal (WSJCAM0) 5k task.

This database consists of 18.30 hours of training data and 1.40

hours of testing data. The baseline system is a decision tree

state-clustered triphone system with approximately 3400 dis-

tinct states. Each triphone unit is modelled by a 3-state left-

to-right HMM. These models are trained on 39 dimensional

MFCC features, including 12 static coefficients, C0 energy

and the first two differentials. The temporally varying class

posteriors are the 40-monophone posterior probabilities ob-

tained by using a feedforward neural network 1 where the in-

put is τ̂t with δ = 4, the hidden layer has 1000 sigmoid ac-

tivated neurons, and the output layer uses softmax activation

function to generate the posteriors.

For each iteration of TVWR training, only one pass over

the data is enough to accumulate the statistics hjm for the re-

gression parameter learning, and other standard statistics. The

maximum iteration of the constraint nonlinear optimizer is set

to be 100, which is shown large enough for the convergence

with 1e-6 tolerance. In order to make an efficient calculation

of temporally varying weights, the minimum class posterior

is set to be 0.01.Setting cjm to be the standard weight and

wjm to be zero can give a reasonable starting point for TVWR

training, i.e. the original standard HMM system. Since both

approximations by Eq.9 and Eq.10 show very close perfor-

mance, only the TVWR system approximated by Eq.10 are

reported here. Note in the following discussion, the number

in #-HMM or #-TVWR below specifies the number of Gaus-

sian components per state within the respective system.

Firstly, the likelihood of TVWR and HMM are plotted in

Figure 1. The starting point of TVWR is the standard sys-

tem with 8 components per state by 4 iterations of ML train-

ing. TVWR training includes the estimation of parameters

for time varying weights and all the other standard parame-

ters. The standard system 12-HMM with the same system

complexity as 8-TVWR, i.e. 4.8m parameters, shows consis-

tent higher likelihood than 8-HMM as expected. In the case of

TVWR training, the biggest likelihood improvements comes

from the first iteration training, and the likelihood is always

1Using ICSI quicknet software package, http://www.icsi.
berkeley.edu/speech/qn.htm
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increasing with fast convergent speed. This shows us the esti-

mation algorithm is well defined. It is not interesting to com-

pare the likelihood between TVWR and standard HMM since

the global normalizer Z by Eq.6 is ignored during training.
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Fig. 1. Likelihood for TVWR and standard HMM system with
the same number of parameters or components.
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Fig. 2. Comparison of Word Error Rate (WER%) for TVWR
and standard HMM system with varying system complexity;
the number of components per state for perspective system is
specified in parentheses.

Secondly, the overall performances of TVWR and stan-

dard HMM system are compared with different system com-

plexity. Each standard HMM system is obtained by 8 itera-

tions of Maximum Likelihood training. At the beginning, the

performance of standard HMM system improves by increas-

ing the system complexity, as shown in Figure 2. However,

the performance decreases when the number of parameters

is larger than 4.8m. This is expectable since the ML trained

standard system is not robust for over training. Compared to

this standard system, TVWR shows consistent improvements

for different system complexity. This shows us the adjustment

of Gaussian weights is learned properly according to the tem-

poral context information. In addition to that, there are two

more interesting findings in this figure: 1). when fewer num-

ber of components are used, the improvements of TVWR is

quite small; 2). when the number of components are large

enough, the performance seems converged. The first finding

shows us the performance of TVWR is sensitive to the num-

ber of adjustable components weights but a optimal number

exists, e.g. 8 in our set up. The second finding shows us

TVWR seems to be robust for over training considering the

convergent performance by increasing the system complex-

ity. It is probably because the conditional context probability

in Eq.3 is now modelled by a discriminative model, i.e. neural

network, rather than a conventional generative model.

Lastly, the best results of TVWR and standard HMM sys-

tem in Figure 2 are compared. 8-TVWR with 4.8m parame-

ters shows the best performance by 6.94% WER among the

TVWR systems, while 12-HMM with the same parameters

also shows the best performance by 7.86% WER among the

HMM systems. 8-TVWR obtained 0.92% absolute improve-

ments or 12% relative improvements over 12-HMM, which

are statistically significant at the level of p-values <0.001.

6. CONCLUSIONS

This paper has proposed an implicit trajectory model using

Temporally Varying Weight Regression (TVWR) to learn the

importance of Gaussian components under different tempo-

ral contexts so that the dynamic acoustic patterns can be bet-

ter recognized. TVWR factorizes the HMM state likelihood

such that the contextual information can be modelled using

time varying weights. Parameter estimation is discussed as

a constrained nonlinear optimization problem. Experimental

results for continuous speech recognition on Wall Street Jour-

nal database showed that consistent improvements can be ob-

tained using the proposed TVWR.
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