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ABSTRACT

Obtaining accurate hidden Markov model (HMM) state sequences
is a research challenge to warrant good system performance in
particle filter (PF) compensation for noisy speech recognition.
Instead of using specific knowledge at the model and state levels
which is hard to estimate, we pool model states into clusters as side
information. Since each cluster encompasses more statistics when
compared to the original HMM states, there is a higher possibility
that the newly formed probability density function at the cluster
level can cover the underlying speech variation to generate
appropriate PF samples for feature compensation. Testing the
proposed PF-based compensation scheme on the Aurora 2
connected digit recognition task, we achieve an error reduction of
12.15% from the best multi-condition trained models using this
integrated PF-HMM framework to estimate the cluster-based
HMM state sequence information.

Index Terms— particle filter compensation, hidden
Markov model, clustering, robust speech recognition

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) algorithms
use hidden Markov models (HMMs) for modeling speech and they
often work very well in matched conditions. However, the
performance degrades when there is a mismatch between training
and testing conditions. To alleviate this problem, we can adapt the
models to new conditions using techniques such as maximum a
posteriori (MAP) [1], and maximum likelihood linear regression
(MLLR) [2], etc. On the other hand, we can compensate the
distorted speech features and attempt to map them to the space of
speech features that were used to train the HMMs. Vector Taylor
series (VTS) [3], cepstral mean subtraction (CMS) [4], and ETSI
advanced front-end (AFE) [5] are notable examples of such
approaches. Particle filter (PF) [6] is a numerical method to
sequentially simulate a target distribution based on Monte Carlo
sampling. PF-based compensation (PFC) proposed in [7] attempts
to enhance speech features in order to improve noisy speech
recognition. The clean speech model set is first tracked using
particle filter algorithm in the filter bank domain and then ASR is
performed on the mel-frequency cepstral coefficient (MFCC)
features extracted from the newly estimated filter bank features.
Compared to other PF based compensation techniques [8-9] PFC is
a more direct approach to track clean speech features in the noisy
environment. A direct approach enables us to obtain probability
density of underlying speech dynamically on sample-by-sample
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basis. If this probability density is constructed accurately,
considerable improvements in recognition results can be obtained.
Moreover, compensation can be done using limited noise
information, making the algorithm less susceptible to noise
variations within an utterance.

Particle Filters are also superior to other tracking techniques
such as Kalman filter [10] and extended Kalman filter [11] because
it is not constrained by the conventional linearity and Gaussianity
[6] requirements. However, particle filters do require a state space
model, which is difficult to obtain for speech signals in the spectral
domain. State transition information is an integral part of the
particle filter algorithm and is used to propagate the particle
samples through time transitions of the signal being processed.
Specifically, the state transition is important to be able to position
the samples at the right locations.

To solve this problem, statistics from HMMs can be used.
Although we only have discrete states in HMMs, each state is
characterized by a continuous density Gaussian mixture model
(GMM) and therefore it enables us to capture part of the variation
in speech features to generate particle samples for feature
compensation. This setting is referred to as an integrated PF-HMM
framework. A key problem to resolve here is the larger the number
of states and the mixture Gaussian components in the HMM set,
the harder it is to choose the correct models to generate particle
samples for PF-based compensation. In this paper we propose a
HMM state clustering approach to estimating the HMM cluster
instead of state sequences. When dealing with non-stationary noise
this allows us to dynamically track and compensate noisy speech
features.

The integrated PF-HMM framework is tested on the Aurora 2
connected digit recognition task. It was found that the proposed
PFC framework reduces the average digit error rates by 12.15%
from 11.27%, obtained with the best multi-condition trained
models, to 9.9%, for conditions with signal-to-noise ratios ranged
from 0dB to 20dB, when the number of clusters and particles are
chosen appropriately to estimate the HMM state information.

2. COMBINING PARTICLE FILTER AND HMM FOR
SPEECH FEATURE COMPENSATION

Particle filtering is often used to model signals emanating from a
dynamical system. If the underlying state transition is known and
the relationship between the system state and the observed output
is available, the state can be found using Monte Carlo simulations
[12]. Considering the underlying process to be discretely Markov:
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We estimate p(x;|y;.;) so that we have a filtered estimate of x;
from the measurements available so far, y,.,. The particle filter
compensation (PFC) process is summarized in 6 steps as follows:

1) Posterior density, p(x;|y;.;) is represented by a finite
number of support points, x; for i =0, ..., N; [6],
NS . .
PO | Vo) = D WS (x, — x7) @)
i=1
2) The weight vector, w', associated with the support
points, approximates the posterior density and are
determined based on the concept of importance sampling
[6] computed with:

W[l — W;_] p(yt |'f;)pl(xrl |x;71) (3)
q(x; 1 X1, 31)

3) PFC is done in spectral domain. This is so because fairly
accurate models that describe the relationship between
clean speech (the signal being tracked) and the noisy
speech (the signal being observed) are available in the

filter bank domain. Given additive noise with no
channel effects [3],

y=x+log(l+e"™) 4
then we can evaluate p(y|x) using

e’

P 1) = F'w) = pln)—— (5)
e’ -1

where x represents clean speech and n is the noise with
density N(uy,, 0y), assuming each channel is Gaussian
with mean u, and variance o¢2. Denoting u =
log(e¥™® — 1) +x, F(u) is the Gaussian cumulative
density function with mean u, and variance ;2. The
variance of the noise density can be obtained from the
available noise-only frames.

4) The density q(x;|x}_1,y¢) plays a crucial role in particle
filtering known as the importance sampling density that
is used to generate the particle samples. In case of speech
signals, it is difficult to obtain because it is derived from
the state transition model which is not available. If g(.)
can be constructed, weights and consequently the
posterior density p(x;|y;..) can then be easily evaluated.
One main issue to be resolved is to find a suitable g(.)
based on the available information. In PFC, we use

. K
a0 | X0 9) ~ D Ny o, 2 ) (6)
k=1

to generate the samples, where N (i s,, Zg,s,) is the kth
Gaussian mixture component for state s, in model A,,
with ¢y s, being its corresponding mixture weight. The
specific model A,, and a state sequence estimate,
S1,Sy, -, St that adequately represents the speech
segment can be obtained through recognition decoding
using the multi-condition trained models.

5) After generating samples from Eq. (6), the weights are
computed using Eq. (3). Once the point density of the
clean speech features is available, we estimate the
compensated features using discrete approximation of
the expectation of the particle filter as
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6) As mentioned above, compensated features are obtained
in filter bank domain. To exploit the superior
discrimination power of cepstrum, we transform the
compensated filter bank features to MFCC. The final
recognition result for the test utterance is then decoded
from the compensated MFCC features.

3. A CLUSTERING APPROACH TO OBTAINING
CORRECT HMM INFORMATION

It has been shown that choosing the correct HMM model and state
sequences greatly improves the accuracy of the overall recognition
system [7]. However in operational scenarios, it is often difficult to
obtain such information using the multi-condition trained models.
Moreover, if this information is far from ideal, the recognition
performance could be worse than the baseline. To alleviate this
problem, we adopt a clustering approach to simplify the process of
picking the best distributions to generate the particle samples from.

As can be seen from Eq. (6), HMM states are used to spread the
particles at the right locations for subsequent estimation of the
underlying clean speech density. If the state is incorrect, the
location of particles will be wrong and the density estimate will be
erroneous. One solution is to merge the states into clusters. Since
the total number of clusters can be much less than the number of
states, the problem of choosing the correct information block for
sample generation is simplified. A tree structure to group the
Gaussian mixtures from clean speech HMMs into clusters can be
built with the following distance measure [13]:

d(m,n) = ng (x) log—dg’” (x) X + .[gn (x) log—dg” (x) X ®)
2,(x) 2, (%)
_ z[o-,i (i) =0 (D) + (1, (D) — 4, (1))’
; o 3 Q) ©)
AU AU PAURITA0)
o (i)

where 4, (i)is the i™ element of the mean vector (m) and

031 (i) is the i diagonal element of the covariance matrix X, .
The parameters of the single Gaussian representing the cluster,
gf (X)=NX | 1, O',%) , is computed as follows:
LSE RS
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Alternatively, we can group the components at the state level
using the following distance measure [14]:
13,18
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where S is the total number of states in the cluster, P is the number

of mixtures per state and b(.) is the observation probability. This

method makes it easy to track the state level composition of each

cluster. In both cases, the clustering algorithm proceeds as follows:
1) Create one cluster for each mixture up to k clusters.

2) Whilek > M,, find n and m for which d(n,m) is
minimum and merge them.

4. OVERALL SCHEME

Once clustering is complete, it is important to pick the most
suitable cluster for feature compensation at each frame. The
particle samples are then generated from the representative density
of the chosen cluster. Two methods can be explored. The first is to
decide the cluster based on the N-best transcripts obtained from
recognition using multi-condition trained models. Denote the states
obtained from the N-best transcripts for noisy speech feature
vectors at time tas Sy, Spp,. Sey - If state sp;  is a member of
cluster ¢y, we increment M(c;) by one, where M(c;) is a count of
how many states from the N-best list belong to cluster c,. We
choose the cluster based on argmax; M(c;)and generate

samples from it. If more than one cluster satisfies this criterion, we
merge their probability density functions. In the second method,
we chose the cluster that maximizes the likelihood of the MFCC

vector at time 7 , O, , belonging to that cluster as follows:

C ~argmax g, (0, | C,) (3)
k

It is important to emphasize here that g, . is derived from

multi-condition speech models and has a different distribution
from the one used to generate the samples. The relationship
between clean clusters and multi-condition clusters is shown in
figure 1. Clean clusters are obtained using methods described in
section 3. The composition information of these clusters is then
used to build a corresponding multi-condition cluster set from
multi-condition HMMs. A cluster C; in clean clusters represents
statistical information of a particular section of clean speech. The
multi-condition counterpart C; represents statistics of the noisy
version of the same speech section.

Multi-
condition
HiMs

Clustering

Multi-
condition
clusters

=TT Clustering

info

cluster set. It is constructed from multi-condition HMM:s that
match more closely with noisy speech.

A block diagram of the overall compensation and recognition
process is shown in Figure 2. We make inference about the cluster
to be used for observation vector O,using both the N-best
transcripts and Eq. (13) combined together. Samples at frame t are
then generated using the pdf of chosen cluster. The weights of the
samples are computed using Eq. (3) and compensated features are
obtained using Eq. (7). Once the compensated features are
available for the whole utterance, recognition is performed again
using retrained HMMs with compensated features.

N-best
Recognition —L‘
Cluster
selection
Observation
Test speech likelihood Most likely
cluster
Sample
generation
PE Final
compensation Recognition

Figure 2. Complete recognition process

5. EXPERIMENTAL RESULTS

To evaluate the proposed framework we experimented on the
Aurora 2 connected digit task. We extracted features (39 elements
with 13 MFCCs and their first and second time derivatives) from
test speech as well as 23 channel filter-bank features thereby
forming two streams. One-best transcript was obtained from the
MFCC stream using the multi-condition trained HMMs. PFC is
then applied to the filter-bank stream (stream two). We chose two
clusters, one based on /-best and the other selected with Eq. (13).

The multi-condition clusters used in Eq. (13) were from 23
channel fbank features so that the test features from stream two can
be directly used to evaluate the likelihood of the observations. For
results in these experiments, clusters were formed using method
two, i.e., tracking the state-wise composition of each cluster. The
number of clusters and particles were varied to evaluate the
performance of the algorithm under different settings. From the
compensated filter-bank features of stream two, we extracted 39-
element MFCC features. Final recognition on these models was
done using the retrained HMM, i.e., multi-condition training data
compensated in a similar fashion as described above.

Table 1. Variable number of clusters (100 particles)

Figure 1. Clustering of multi-condition trained HMMs

Clean clusters are necessary to track clean speech because we
need to generate samples from clean speech distributions.
However, they are not the best choice for estimating Eq. (13)
because the observation is noisy and has a different distribution.
The best candidate for computing Eq. (13) is the multi-condition
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Word 20 25 30 MC Clean
Accy Clust. | Clust. | Clust. | Trained | Trained
clean 99.11 | 99.11 | 99.11 98.50 99.11
20dB 97.76 | 98.00 | 97.93 97.66 97.21
15dB 97.00 | 97.14 | 96.69 96.80 92.36
10dB 9521 | 95.41 | 93.88 95.32 75.14
5dB 89.48 | 89.59 | 87.08 89.14 4242
0dB 70.16 | 70.38 | 68.84 | 64.75 22.57
-5dB 36.30 | 36.63 | 3694 | 2747 NA
0-20dB | 89.92 | 90.10 | 88.88 88.73 65.94




The results for a fixed number of particles (100) are shown in
Table 1. The number of clusters was 20, 25 or 30. To set the
specific number of clusters, HMM states were combined and
clustering was stopped when the specified number was reached.
HMM sets for all purposes were 18 states, with each state
represented by 3 Gaussian mixtures. For the 11-digit vocabulary,
we have a total of approximately 180 states. In case of, for
example, 20 clusters, we have a 9 to 1 reduction of information
blocks to choose from for plugging in the PF scheme.

It is interesting to note that best results were obtained for 25
clusters. Increasing the number of clusters beyond 25 did not
improve the accuracy. The larger the number of clusters, the more
specific speech statistics each cluster contains. If the number of
clusters is large, then each cluster encompasses more specific
section of the speech statistics. Having more specific information
in each cluster is good for better compensation and recognition
because the particles can be placed more accurately. However, due
to the large number of clusters to choose from, it is difficult to pick
the correct cluster for generation of particles. More errors were
made in the cluster selection process resulting in degradation in the
overall performance.

This is further illustrated in Figure 3. If the correct
cluster is known, having large number of clusters and consequently
more specific information per cluster will only improve the
performance. The results are for 20, 25 and 30 clusters. In the
known cluster case, one cluster is obtained using Eq. (13) and the
second cluster is the correct one. Correct cluster means the one that
contains the state (obtained by doing recognition on the clean
version of the noisy utterance using clean HMMSs) to which the
observation actually belongs to. For the unknown cluster case, the
clusters are obtained using Eq. (13) and 1 — best. It can readily be
observed from the known cluster case that if the choice of cluster is
always correct, the recognition performance improves drastically.
Error rate was reduced by 54%, 59% and 61.4% for 20, 25 and 30
clusters, respectively. Moreover, improvement faithfully follows
the number of clusters used. This was also corroborated by the fact
that if the cluster is specific down to the HMM state level, i.e., the
exact HMM state sequence was assumed known and each state is a
separate cluster (total of approximately 180 clusters), the error rate
was reduced by as much as 67% [7].

For the results in Table 2, we fixed the number of clusters and
varied the number of particles. As we increased the number of
particles, the accuracy of the algorithm improves for set A and B
combined i.e. for additive noise. The error reduction is 17% over
MC trained models. Using a large number of particles implies
more samples were utilized to construct the predicted densities of
the underlying clean speech features, which is now denser and thus
better approximated. Thus, a gradual improvement in the
recognition results was observed as the particles increased. In case
of Set C, however, the performance was worse when more
particles were used. This is so because the underlying distribution
is different due to the distortions other than additive noise.

Table 2. Variable number of particles (25 clusters)

Set A Set B Set C Average
100 particles 90.02 91.03 89.26 90.1
500 particles 90.03 91.10 89.07 90.07
1000 particles 90.02 91.13 89.07 90.07
MC Trained 88.41 88.82 88.97 88.73
Clean Trained 64.00 67.46 65.39 65.73
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Figure 3. Accuracy when correct cluster known vs. unknown
6. SUMMARY

We have proposed an Integrated PF-HMM approach where we
incorporate statistical information available from the HMMs, to
make up for the lack of suitable state transition model for speech
signals required for particle filters. This enables us to use the PF
framework to compensate noisy speech signals. We further
developed a scheme to merge statistically similar information in
HMM states to enable us to find the right section of HMMs to
dynamically plug in the particle filter algorithm. Results show that
if we use information from HMMs that match specifically well
with section of speech being compensated, significant error
reduction is possible compared to multi-condition HMMs.
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