
DISCRIMINATIVE DYNAMIC GAUSSIAN MIXTURE SELECTION WITH ENHANCED
ROBUSTNESS AND PERFORMANCE FOR MULTI-ACCENT SPEECH RECOGNITION

Chao Zhang�, Yi Liu�, Yunqing Xia�, Chin-Hui Lee†

�Center for Speech and Language Technologies, Division of Technology Innovation and Development,
Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, China
†School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT

We propose a discriminative DGMS (dynamic Gaussian mixture
selection) strategy to enhance restructuring of a pre-trained set of
Gaussian mixture models to cover unexpected acoustic variations at
run time in automatic speech recognition. The number of Gaussian
components in each hidden Markov model (HMM) state set aside is
determined by a minimum classification error criterion. We also use
a genetic algorithm to solve the integer programing problem to find
the globally optimal state size. This parameter is used to adjust the
HMM state densities for each input speech frame, leading to both
high robustness and good resolution for dynamic tracking to cover
a diversity of temporal variations in speech. Tested on an accented
speech recognition application, the proposed framework yields an
improved syllable error rate reduction over the conventional DGMS
and augmented HMM systems when evaluated on three typical
Chinese accents, Chuan, Yue and Wu, while maintaining its perfor-
mance for standard Putonghua.

Index Terms— Dynamic Gaussian Mixture Selection, Mini-
mum Classification Error, Genetic Algorithm, Accent

1. INTRODUCTION

Conventional dynamic Gaussian mixture selection (DGMS) [1] em-
pirically determines a parameter vector, with each integer element
indicating the size of a Gaussian mixture model (GMM) used to
characterize one particular state from a subset of hidden Markov
model (HMM) states set aside for covering unknown acoustic varia-
tions in speech recognition for dynamic frame-level GMM reconfig-
uration at run time. In this paper we propose a discriminative DGMS
strategy to determine the parameters with a minimum classification
error (MCE) [2] criterion over a training set containing condition-
specific data able to cover some intended variations. We also propose
solving this integer programming problem with a genetic algorithm
(GA) [3] to find a globally optimal combination of GMM sizes by a
heuristic to avoid going over its entire search space, and thus greatly
reducing the cost.

We also test the proposed DGMS strategy on accented speech
recognition in which the multi-accent variations can be accounted for
in the conventional DGMS algorithm [1]. Accent is a crucial bottle-
neck for an extensive usage of speech-enabled applications across a
large population in China since all Chinese speakers share the same
ideographic characters but with different pronunciations due to re-
gional accents. There are seven major dialectal regions in China:
Guanhua, Yue, Wu, Xiang, Gan, Min, and Kejia, which have quite
different acoustic and linguistic representations from Putonghua [4].
Hence, speakers whose first language is a native dialect have their

Putonghua pronunciations inevitably influenced by the dialect. Since
accented speech differs from the standard one in terms of acousti-
cal and phonological characteristics, most state-of-the-art Putonghua
ASR systems fail to perform well when the speaker has a regional
accent. This problem is especially severe when multiple accents are
presented.

Traditional methods for accented speech recognition focus on
handling accent variations at the acoustic and phonetic levels [4-
5]. Besides the straightforward method of building models with a
large amount of accented speech, maximum a posteriori (MAP) [4]
is commonly used to adapt the standard models to fit certain accent to
cover potential acoustic changes [4-5]. A major weakness of conven-
tional adaptation approaches [5] is that the parameters of the acous-
tic models undergo an irreversible change, making the models los-
ing their ability to cover other accents and standard speech. An ap-
proach to state-level pronunciation modeling with model reconstruc-
tion was thus proposed to handle both acoustic and phonetic changes
for accented speech [4]. However, the method without optimization
increases the model size, resulting in inefficient use of the Gaus-
sian components and causing model resolution degradation. This
inevitably brings serious performance degradation to beam pruning
in the ASR decoding process.

Targets at multi-accent speech recognition [1], we propose dis-
criminative DGMS with each reconstructed HMM state having an
individual number of Gaussian components that are the nearest
and most representative to the current frame. Experimental results
show that our proposed DGMS method is robust in pruned beam
search and yields a significant absolute syllable error rate reduction
by 11.17%, 11.96% and 10.88%, respectively, on the Chuan, Yue,
and Wu accents from the conventional Putonghua triphone HMM
system, while maintaining its performance on standard Putonghua.

2. ACOUSTIC MODEL RECONSTRUCTION FOR HMM
AUGUMENTATION

Acoustic model reconstruction at the state level was proved capa-
ble of handling accent changes at both acoustic and phonetic levels
in our previous work [4]. In general, the procedure of traditional
model reconstruction is achieved with the following five steps on the
accented data:

1) Obtain a canonical transcription with time. This is achie-
ved by forced alignment on the phone-level canonical transcriptions.

2) Obtain an alternative transcription by phone classification
according to the time boundaries obtained in step 1) [1].

3) Extract the reliable accent specific unit (ASU) by compar-
ing the canonical and alternative transcriptions. Each reliable ASU
is selected from the misclassified phones and represents an accent
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change [1].

4) Estimate an auxiliary tree for reliable ASU by creating its
tied-state triphone models by decision tree-based clustering with its
relevant instances selected from the misclassified phones [1].

5) Reconstruct the canonical acoustic models to cover accent
changes [4]. Accented Gaussian components from a node of aux-
iliary decision tree are borrowed to enlarge and adjust the Gaussian
mixture distribution of a leaf node on its relevant canonical decision
tree (illustrated in Figure 1) [4].

The above approach seeks to cover accent changes by adjusting
canonical Gaussian mixture densities with the borrowed accented
Gaussian components. We refer to the states adjusted by acous-
tic model reconstruction as the statically reconstructed states to
distinguish themselves from the ones dynamically reconstructed
by DGMS. More details about reliable ASUs and acoustic model
reconstruction are given in our previous studies [1, 4].

Fig. 1. Decision tree merging for ASU ‘ch’→‘q’, where ‘ch’ is the
canonical phone, and ‘q’ an alternative phone.

3. MCE BASED DISCRIMINATIVE DYNAMIC GAUSSIAN
MIXTURE SELECTION

Acoustic model reconstruction brings advantages with a price of in-
creasing the acoustic model size. Meanwhile, it can be seen from
Figure 2 (A) and (B) that integration of the Gaussian components
may degrade model resolution. For an extreme case, the degradation
is serious in beam search pruning during decoding because all the
components are considered in likelihood calculation.

To overcome the model resolution degradation without increas-
ing model size, for each decoded speech frame, we use DGMS to dy-
namically reconstruct the output density of a statically reconstructed
state to compute its observation likelihood. The parameters that con-
trol DGMS to reconstruct the output densities are pre-determined
discrete variables, which are optimized by GA according to MCE
criterion. Therefore, we obtain discriminative DGMS.

3.1. Dynamic Gaussian Mixture Selection (DGMS)

To avoid model resolution loss and to increase robustness on accent
variations, in decoding, DGMS adjusts the output density of a stat-
ically reconstructed state by selecting k components being nearest
to an input frame. A dynamic output distribution is thus built to
compute the observation likelihood for that frame during decoding.
DGMS is explained formally as follows.

Let Nm = N(μm;Σm) denote the m-th Gaussian mixture,

br(o) =
∑M

m=1 wmN(o|μm;Σm) the output density for the recon-

structed state, r, N
′
1, . . . , N

′
k the k Gaussian components nearest to

speech frame o in terms of Mahalanobis distance, and the dynamical
output distribution is evaluated as follows.{

b
′
r(o) =

∑k
m=1 w

′′
mN(o|μ′

m;Σ
′
m)

w
′′
m = w

′
m

/∑k
m=1 w

′′
m

. (1)

For the acoustic samples of an accented speech frame that are
located at the boundary of the Gaussian densities, DGMS chooses
k Gaussian mixtures being most representative to the relevant ac-
cent changes, and the obtained dynamical output density has a better
model representation ability as illustrated in Figure 2 (C). Mean-
while, for acoustic samples of the standard speech frames located
at the center of the density, its dynamical output density is similar
to that without model reconstruction, as shown in Figure 2 (D), and
retains its covering ability for standard speech.

Fig. 2. Output densities of model reconstruction and DGMS.

To provide sound flexibility to fit the diversified accent changes,
k is pre-specified and differentiated for different HMM states. How-
ever, this gives many statically reconstructed state parameters to
DGMS. We refer to them as the parameter vector. Difficulties in
finding the optimal parameter vector are: 1) how to evaluate a
vector; 2) how to find the optimum efficiently.

3.2. MCE Criterion for Discriminative Dynamic Gaussian Mix-
ture Selection

MCE is a widely used criterion to minimize an estimation of the
errors in the training set. Its effectiveness has been shown in dis-
criminative training of HMMs for ASR [2, 7-8]. We adopt MCE to
select the parameter vectors and obtain discriminative DGMS.

Suppose O is the feature sequence of a training utterance, and Λ
is the set of parameters for acoustic models, MCE is formulated with
discriminant functions gj(O,Λ, c) [2, 6] which represent the acous-
tic log-likelihood for an output string Sj scored with DGMS using a
parameter vector c. A misclassification measure di(O,Λ, c) is used
to evaluate the acoustic difference between the canonical transcrip-
tion Si and its alternative transcriptions.

di(O,Λ, c) = −gj(O,Λ, c) + max
j

gj(O,Λ, c). (2)

Therefore, the loss function for MCE can be defined as follows.

l(di(O,Λ, c)) =
1

1 + e−α·di(O,Λ,c)
. (3)
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We use the MCE loss function as the objective function in opti-
mizing the parameters of DGMS. When the minimum value in Eq.
(3) is obtained, DGMS minimizes the empirical risk by reducing a
maximum number of training set errors, including those caused by
accent. Therefore, it increases the covering ability for accent vari-
ations. Moreover, by assigning different weights to training utter-
ances with different correct/incorrect degrees we are able to control
the optimization using varying values of α [6].

The canonical and alternative transcriptions are generated by
forced alignment in free grammar recognition, keeping track of the
full state alignment. We use the phone sequences that score the
largest among fixed n-best outputs, to approximate the exact alter-
native transcriptions for vector c.

3.3. Solving Optimal Parameter Vector by Genetic Algorithm

To obtain the optimal value of Eq. (3) by varying parameter vectors,
the entire search space grows exponentially along with the vector
size increases. It is often not feasible to find the optimum by enu-
merating all possible vectors. Therefore, we use GA to perform the
optimization process efficiently to solve for the vector c.

GA is a random “search for solution” algorithm that is capa-
ble of finding the optimal solution by examining over only a small
fraction of the possible candidates via mimicking the survival of the
fittest process of natural evolution [3]. Viewing a DGMS parame-
ter vector as a chromosome, tuning for optimum parameters equals
to find the fittest chromosome during the evolution. Therefore, a
chromosome c is constituted by R positive integers being relevant
to the Gaussian component selection number k for the R statically
reconstructed states. Every integer ranges from a pre-specified min-
imum to the Gaussian component number in its relevant state that is
reconstructed statically.

We use MCE to define the fittest function, f(c), of GA. Note
f(O, c) = l(di(O,Λ, c)), f(c) is the average of f(O, c) over the
entire training set. GA for DGMS works as follows:

1) Generate N chromosomes randomly as the initial population;

2) Compute a fitness function f(c), for every chromosome;

3) Select C chromosomes randomly from the current population,
C is even. The selection probability is

P (c) =
1

f(c)

/⎛
⎝∑

c
′

1

f(c′)

⎞
⎠ , (4)

where c
′

refers to the set of chromosomes in the population. We
use a conventional “roulette-wheel sampling” method to make the
selection as explained in details in [3].

4) Reproduce the selected chromosomes by sequentially divid-
ing them into C/2 pairs. “One-point crossover” is used for repro-
duction of each pair [3], and generates C children.

5) Merge the child chromosomes generated from step 4) with the
unselected ones from step 3), and form a new population. Generate
a random probability for each chromosome at each locus, if the ran-
dom probability is smaller than a pre-set mutation probability, the
integer at the current locus is randomly increased or decreased by
one with equal probability. Replace the original chromosomes with
their variations.

6) Replace the current population by the new population.

7) Repeat steps 2-6, if no c satisfies f(c) ≈ 0 and the maximum
generation number is not reached.

The chromosome with the smallest fittest function value is the
optimum parameter vector for DGMS.

Remarkably, we use GA instead of other “search for solution”
algorithms for the following two reasons: 1) Chromosomes of GA
have inherently discrete representations, which match our goal of op-
timizing discrete variables; 2) GA is guaranteed to reach the global
optimum if enough generations have been reproduced [3].

4. RECOGNITION EXPERIMENTS

The 863 regional accent speech corpus [7] was used in our experi-
ments to evaluate our method on three typical accents – Chuan, Yue,
and Wu. This database is the largest one and most commonly used
in Chinese accented speech recognition [1]. All data were sampled
at 16kHz with a 16-bit precision. There is no word n-gram in these
sentences so that we can isolate the effect of our method without
the influence from high-level information. Table 1 lists the detailed
statistics for the datasets.

Table 1. Data set separation in all experiments

Data
ID

Du−
ration

Syllable
Number

Speaker
Number

Utter.
Number Type

DevC 6.5h 51,907 20 3,205
Chuan

TestC 4.3h 33,847 20 2,000

DevY 6.1h 51,341 20 3,091
Yue

TestY 3.5h 31,191 20 2,000

DevW 6.6h 52,584 20 3,471
Wu

TestW 3.8h 29,888 20 2,000

TrainP 51.5h 340,556 100 25,920 Pu−
tonghuaTestP 3.9h 23,158 10 2,000

The HMM topology was three-state, left-to-right without skips.
The acoustic features were 39-dim vector with 13MFCC, 13Δ
MFCC, and 13ΔΔMFCC. 28 initials and 36 finals were used
to generate context-independent HMMs. Our Putonghua triphone
HMMs with 3,000 tied-states and 12 Gaussian components per state
were trained using Putonghua data set TrainP by HTK decision tree
based state-tying. A dictionary with all 413 syllables was used.

165, 191, and 116 reliable ASUs were extracted from DevC,
DevY, and DevW, respectively, resulting in 495, 573, and 498 auxil-
iary trees with 517, 605, and 533 tied-states, respectively. The aug-
mented acoustic models include 42,620 Gaussian components (14.2
components per state on average). Our augmented HMMs have 546
statically reconstructed states. α for MCE was set to 0.01 to map
many training tokens falling into the linear region of the loss function
in Eq. (3), and to increase the separation between correct/incorrect
hypotheses as well as the generalization ability on the unseen ac-
cented data [6]. For GA in our experiments, the population size N ,
reproduction size C, and mutation probability were set to 400, 200
and 0.3, respectively. The 5-best outputs obtained by the Augmented
HMMs were used to approximate the exact alternative transcriptions
in MCE. The optimization was forced to stop at a maximum of 1,200
iterations, and its objective function was converging and reduced
from 0.86 to 0.62.

We will first examine the effectiveness in using DGMS to avoid
model resolution loss. We evaluate model resolution by

Di(Λ) = −
∑
O

di(O,Λ, c)/gi(O,Λ, c), (5)

where gi is the acoustic log-likelihood with on canonical state i; di
is the same as in Eq. (2) that represents the acoustic difference for a
observation sequence scored on its canonical and alternative states.
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Therefore, the model resolution for state i increases when Di(Λ)
is increased. Let Di(Λ0) denote the resolution of the augmented
HMMs, Di(Λ

∗) the resolution with DGMS. Hence, a relative model
resolution improvement obtained by DGMS is

sgn(Di(Λ
∗)) · |Di(Λ

∗)/Di(Λ)0|. (6)

Relative model resolution improvements for some selective tied-
states are illustrated in Figure 3, which shows DGMS significantly
improved the model resolution in Eq. (6), i.e., enhancing the separa-
tion between the canonical states and their alternative states. There-
fore, in beam search, when the pruning threshold t, the value such
that models whose maximum acoustic scores fall below it are de-
activated, decreases, the search paths reserved by DGMS are more
accurate than those reserved without DGMS, relieving the perfor-
mance degradation in pruned search caused by acoustic model re-
construction, as we have presented in Figure 4. From Figure 4 we
can see, with DGMS, system performance degraded slower as well
as obtained lower SER when t decreases.

Fig. 3. Relative model resolution for representative states with/with-
out DGMS evaluated on Yue accent, Di(Λ0) is normalized.

Fig. 4. SER variations for Augmented HMMs with/without DGMS,
when pruning threshold t changes from 100.0 to 250.0 evaluated on
Yue accent.

Finally, we will examine the recognition accuracy with the use
of discriminative DGMS on multi-accent. As seen from Table 2, ac-
cents degrade recognition accuracy when the acoustic models were
trained by merely standard-accent speech. The augmented HMMs
relieve the performance degradation on multi-accent by borrowing
accented Gaussian components to adjust pre-trained mixture distri-
butions and enables more Gaussian components located at the mix-
ture boundaries to cover accent changes [4], with little impact on
Putonghua. When using DGMS with the augmented HMMs, SERs
on Chuan, Yue, and Wu dropped relatively by 3.63%, 4.04%, and

Table 2. Lower SER for using discriminative DGMS to conventional
triphone and Augmented HMMs

System Syllable Error Rate (SER) %
TestP TestC TestY Test W

Putonghua HMMs 22.48 56.57 58.31 55.46

Augmented HMMs
22.11 47.11 48.30 46.41
(-0.37) (-9.46) (-10.01) (-9.05)

Augmented HMMs 22.18 45.40 46.35 44.58
+DGMS (-0.30) (-11.17) (-11.96) (-10.88)

3.94%. This improvement was achieved because minimizing clas-
sification errors increases the coverage abilities for accent changes.
Meanwhile, our method maintained the performance on Putonghua
as we restricted the reconstructed output densities with no less than 6
Gaussian components by DGMS, leading to retaining the pre-trained
mixture distributions for standard speech.

5. SUMMARY

Unexpected acoustic variations occur constantly at run time in au-
tomatic speech recognition. In this paper, a discriminative dynamic
Gaussian mixture selection strategy is proposed to enhance restruc-
turing of a pre-trained set of Gaussian mixture models so as to
cover the variations. Experimental results show the new strategy is
effective. Meanwhile, we conducted experiments on an accented
speech recognition application, and results indicate the proposed
framework yields an improved syllable error rate reduction over the
conventional DGMS and augmented HMM systems when evalu-
ated on three typical Chinese accents, Chuan, Yue and Wu, while
maintaining its performance for standard Putonghua.
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