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ABSTRACT

The parameters of the standard Hidden Markov Model frame-

work for speech recognition are typically trained via Maxi-

mum Likelihood. However, better recognition performance

is achievable with discriminative training criteria like Maxi-

mum Mutual Information or Minimum Phone Error. While it

is generally accepted that these discriminative criteria are bet-

ter suited to minimizing Word Error Rate, there is very little

qualitative intuition for how the improvements are achieved.

Through a series of “resampling” experiments, we show

that discriminative training (MPE in particular) appears to

be compensating for a specific incorrect assumption of the

HMM—that speech frames are conditionally independent.

Index Terms— speech, discriminative training, MMI,

MPE, sampling, statistical independence

1. INTRODUCTION

For many years, the model of choice for speech recognition

systems has been a Hidden Markov Model (HMM) where

each hidden state generates a mixture of Gaussians to rep-

resent output frames. Traditionally, the parameters of these

models have been trained via the Expectation Maximization

(EM) algorithm so as to maximize the likelihood of manually

transcribed speech data. Such Maximum Likelihood (ML)

estimation has the following desirable property: if the data

satisfies the assumptions of the model, then as the amount of

training data goes to infinity, the global parameter estimate

will be optimal in that it is asymptotically unbiased with min-

imum variance [1].

In practice, however, training sets are limited in size, EM

only guarantees convergence to a local, rather than global

optimum, and actual speech data clearly violates the model

assumptions. Most conspicuously, the output distribution of

each HMM state is not truly Gaussian, and the independence

assumption, that a speech frame is independent of all other

frames conditional on its generating state, is false.

As a result, a variety of other estimation procedures can

yield parameters that give better performance. In particular,

discriminative training schemes like Maximum Mutual Infor-

mation (MMI) [2, 3] and more recently, Minimum Phone Er-

ror (MPE) [4] have shown significant improvement over ML.

In general, ML estimation seeks to maximize the prob-

ability of the acoustic observations given the correct tran-

scriptions P (O|S), while discriminative training reverses

the direction of the conditioning, to maximize something

like P (S|O)1. Why does this work? Is there a meaningful

qualitative description of how the discriminatively trained

parameters differ from the maximum likelihood parameters?

To the best of our knowledge, there has been no empirical

investigation of this matter for speech recognition.

We present a series of experiments to demonstrate that the

standard discriminative training procedures do not improve

the models of the states’ output distributions; somewhat sur-

prisingly, they appear to compensate for the incorrect assump-

tions of independence, even beyond the state level. We hope

that beginning to understand how discriminative training im-

proves performance points the way toward more targeted re-

search programs.

The primary statistical tool for these experiments is a

version of resampling, as introduced in [5]—creating pseudo

speech data by stringing together samples of real speech seg-

ments. By manipulating the test data to include or remove

specific statistical properties, we can tease apart differences

between ML-trained models and models trained discrimina-

tively.

Section 2 briefly reviews the objective functions in ques-

tion, Section 3 outlines the data and models used in the series

of experiments described in Section 4; we conclude with a

short discussion in Section 5.

2. OBJECTIVE FUNCTIONS

The standard objective function used in Maximum Likelihood

training can be written as:

FML(λ) =
∑

r

log Pλ(or|sr) (1)

1This is precisely the MMI criterion; MPE is a kind of smoothed version

(see equations (2) and (3).
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Here, sr is the correct transcription of utterance or. While

Maximum Mutual Information (MMI) was the discrimina-

tive criterion of choice for some time, Minimum Phone Error

tends to give slightly better performance. In the interest of

parsimony, we restrict our analysis to MPE, though we give

the objective function for MMI as well to help with intuition:

FMMI(λ) =
∑

r

log
Pλ(or|sr) P (sr)∑

s Pλ(or|s) P (s)
(2)

FMPE(λ) =
∑

r

∑
s Pλ(or|s) P (s) A(s, sr)∑

u Pλ(or|u) P (u)
(3)

P (s) is the language model probability for sentence s2.

At the sentence level, the MMI criterion is simply the poste-

rior probability of the correct transcription: the probability of

the correct transcription in the numerator, and the sum over

all possible transcriptions in the denominator. In practice, the

denominator is estimated from a lattice of competitive alter-

native transcriptions. The MPE objective is quite similar, but

measures success with A(s, sr), the raw phone transcription

accuracy of a sentence s relative to the reference sr. Thus

MPE favors word transcriptions that have the best phone ac-

curacy relative to competing transcriptions. For more exten-

sive discussion, see [6].

3. DATA AND MODELS

We show experimental results on both Wall Street Journal

(WSJ), carefully read news reports in controlled quiet condi-

tions, and Switchboard (SWB), spontaneous telephone con-

versations in uncontrolled environments. The training data

include 66 hours of the WSJ SI-200 dataset and 300 hours of

Switchboard I. Each dataset is split into two speaker-disjoint

sets, one for training recognition models, and one for train-

ing models used for forced alignment and resampling (we’ll

call these the recognition models and the alignment models,

respectively). Statistics of the training and test sets are given

in Table 1; for more details, see [5].

Dataset Speakers Utterances Words Hours
WSJ align 100 13,857 249,557 32

WSJ rec 100 14,852 250,904 32

SWB align 256 105,629 1,366,704 135

SWB rec 255 100,750 1,343,286 132

WSJ test 18 576 9,381 1.2

SWB test 23 954 10,727 1.1

Table 1. Training set (top) and test set (bottom) statistics.

We use version 3.4 of the HTK toolkit to train and test

our models [7]. In particular, we use the standard HTK front-

2We’ve omitted the scaling factor κ for simplicity, though this is in fact

important for training.

end to produce a 39 dimensional feature vector every 10 ms:

13 Mel-cepstral coefficients, including energy, plus their first

and second differences over a 25 ms window. The cepstral

coefficients are mean-normalized at the utterance level. We

use version 0.6 of the CMU pronunciation dictionary (stress

removed) for both WSJ and SWB models.

The acoustic models are cross-word triphones modeled by

a three-state HMM with a discrete linear transition structure

(no skipping) and one diagonal Gaussian per state. Signifi-

cantly better performance can be achieved with mixture mod-

els, but the simplicity of a single component makes analysis

easier and helps highlight performance differences in our ex-

periments.

Maximum likelihood training roughly follows the HTK

tutorial: monophone models are estimated from a “flat start”,

duplicated to form triphone models, clustered (2500 states for

WSJ and 5000 states for SWB), and re-estimated. The Baum-

Welch algorithm is used for estimation.

MPE training roughly follows [6, 8], starting from the

ML-trained models: First, a weak bigram language model is

estimated from the training transcripts. Second, word-level

numerator lattices are generated using the training transcripts

and the training dictionary, and word-level denominator lat-

tices are generated by running recognition on the training data

using the weak bigram LM and the seed acoustic models. Fi-

nally, forced alignment, again using the seed acoustic models,

is performed on these word lattices to obtain phone-marked

numerator and denominator lattices. At this point, we run

lattice-based MPE using the extended Baum-Welch algorithm

for estimation, with standard settings (E = 2; τ = 50)3.

Recognition experiments are performed with a 5k bigram

language model for WSJ and a 20k trigram language model

for SWB, using HTK’s HDecode for decoding with a wide

search beam (300), a word-insertion penalty of -4, and the

language model scale factor set to 15.

4. EXPERIMENTS

4.1. Classifying frames

Before delving into resampling, we begin with a more

straightforward experiment. One way MPE could improve

over ML is by providing better classification decisions among

states. Since a single Gaussian is not the correct generative

model for a state, and discriminative training in general is

agnostic with regards to the underlying distributions, the

discriminative framework could be learning to distinguish

between states more effectively than ML.

We set up an experiment to test this possibility: First,

we run forced alignment on the test data using the alignment

3Our code for training and testing models (using HTK tools), including

discriminative training is available here: https://code.google.com/p/pyhtk.
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Fig. 1. Classification accuracies for ML and MPE models, broken down by phoneme (WSJ data).

model; this gives a label for each frame4. Next, we use the

ML recognition models as well as the MPE recognition mod-

els to classify each frame (the recognition models are used to

rule out any cheating with respect to the forced alignment):

The posterior probability of a frame is computed using each

of the state models (recall there are 2500 WSJ states and 5000

SWB states) and the predicted state is the one with the highest

posterior.

We assume a uniform prior over states (though including

a prior does not qualitatively change the results). In total,

427,318 frames are classified in the WSJ test, and 370,781

in the SWB test. Table 2 shows overall classification results,

demonstrating that in all cases, the ML models outperform the

MPE models in both state classification and phoneme classi-

fication (where the prediction is correct so long as it matches

the correct phoneme)5 Figure 1 breaks down classification ac-

curacy into phonemes; ML is consistently better than MPE,

though the diphthong “oy” is a notable exception.

State %acc Phone %acc
Test ML MPE ML MPE

WSJ 26.7 24.2 58.1 56.6

SWB 5.3 5.2 34.2 33.6

Table 2. Overall state and phoneme classification accuracies.

These results show that MPE training does not improve

on ML training at the level of frame classification. This must

mean that MPE’s benefit only appears across sequences of

frames, a somewhat surprising result given that it can only

adjust parameters within an HMM framework that assumes

conditional independence among frames (and thus assigns a

separate probability to each frame).

4The classification results are the same regardless of whether this align-

ment model is trained with ML or MPE.
5ML also outperforms MPE if correctness is defined by:

Rank(correct)≤ k , for k ∈ {2, 5, 10, 20}.

4.2. Resampling

The objective of resampling, introduced in [5], is to create

pseudo test data that shares the output distributions of real

test data, but satisfies various independence assumptions of

the HMM that are violated by real data. First, the alignment

model is used to create a forced alignment of the utterances

used to train that model, so that each speech frame is anno-

tated with its most likely generating state. Next, we walk

through this alignment, filling an urn for each state with its

representative frames; at the end of this process, each urn is

populated with frames representing its empirical distribution.

To generate resampled data, we use the alignment model to

create a forced alignment of the original test data, and then

sample a frame (at random, with replacement) from the appro-

priate urn for each frame position; these resampled frames are

concatenated. With this frame-level resampling, the pseudo

test data is exactly the same length as the original, and has

the same underlying alignment, but the frames are now con-

ditionally independent.

By placing entire state regions—sequences of frames—in

the urns, and then resampling (again, concatenating samples),

we end up with pseudo test data with dependence among

frames within state regions, but independence across state

boundaries (note that resampling units larger than single

frames produces pseudo test data that may be a different

length from the original). We can further extend this idea to

phonemes and to words; in both cases, the urn labels include

the triphone context (“eh-N-ih” or “n-THE-f”, for example)

to respect the cross-word triphone structure of the models.

Table 3 shows the results of the resampling experiments.

Pseudo test data is created by resampling frames, states,

phonemes, and words, and then the two recognition models,

ML and MPE, are used for decoding. Each resampling exper-

iment is repeated five times and the mean WERs are shown in

the table; the standard errors range from 0.01 (frame resam-

pling) to 0.22 (word resampling), but all the WER differences
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WSJ WER SWB WER Independence Assumptions Satisfied
Test ML MPE Change ML MPE Change oi ⊥⊥ oj |s
Resampled frames 0.5 0.9 +90% 4.5 5.9 +34% yes

Resampled states 2.8 2.2 -20% 28.2 22.0 -22% with i and j in different states

Resampled phones 6.2 4.8 -23% 42.1 32.3 -23% with i and j in different phonemes

Resampled words 13.6 10.5 -23% 56.4 44.4 -21% with i and j in different words

Original 15.2 11.2 -26% 61.5 50.2 -18% no

Table 3. Recognition results with ML and MPE models when the test data is assembled by resampling.

between recognition models are highly significant.

Perhaps the most striking thing about the resampling re-

sults is how small the error rates are when all the indepen-

dence assumptions are satisfied by the data; this is addressed

at length in [5]. However, here we are most interested in the

relative differences between ML and MPE. There are a few

important points:

First, we observe that with test data assembled by resam-

pling frames, the ML-trained models outperform the MPE-

trained models, a result consistent with the frame classifica-

tion experiment (above). In removing all dependence among

frames, we also seem to have removed any advantage that the

MPE models had over the ML models.

Second, we observe that when we instead resample whole

states, MPE outperforms ML by about 20%. What have we

changed about the test data in switching from frame resam-

pling to state resampling? We have introduced within-state

dependence among frames. Thus, this result strongly sug-

gests that MPE is winning by compensating for dependence

at the sub-phone state level.

Third, we observe that as we continue to add dependence,

resampling phonemes, words, and finally running recognition

on the original data, the relative advantage of MPE over ML

does not change very much. This suggests that the within-

state dependence is the primary issue addressed by MPE; we

cannot however, rule out the possibility that MPE compen-

sates for dependence across phonemes or words.

5. DISCUSSION

Our experiments show that (1) MPE does not improve on

ML in modeling sub-phone state output distributions, and (2)

MPE appears to compensate for statistical dependence, in par-

ticular within states. While discriminative training may also

improve on ML in other ways, this is a fairly indirect method

for temporal dynamics. If we can understand a little more

about how MPE adjusts for dependence—perhaps by normal-

izing phoneme or state-level scores—we might be able to ben-

efit by modeling dependence directly. Such insight would be

especially valuable given the halting progress of segmental

modeling techniques that aim to model such dependence.
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